Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Arch Virol ; 168(6): 161, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179263

RESUMO

Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs in Hunan province of China and has also been identified in pigs infected with porcine epidemic diarrhea virus (PEDV). To further investigate the coinfection and genetic diversity of these two viruses, 65 clinical samples (including feces and intestinal tissues) were collected from diseased piglets on 19 large-scale pig farms in Henan province of China, and a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (qPCR) assay was developed for detecting PEDV and PCV4 simultaneously. The results showed that the limit of detection was 55.2 copies/µL and 44.1 copies/µL for PEDV and PCV4, respectively. The detection rate for PEDV and PCV4 was 40% (26/65) and 38% (25/65), respectively, and the coinfection rate for the two viruses was 34% (22/65). Subsequently, the full-length spike (S) gene of eight PEDV strains and a portion of the genome containing the capsid (Cap) gene of three PCV4 strains were sequenced and analyzed. Phylogenetic analysis showed that all of the PEDV strains from the present study clustered in the G2a subgroup and were closely related to most of the PEDV reference strains from China from 2011 to 2021, but they differed genetically from a vaccine strain (CV777), a Korean strain (virulent DR1), and two Chinese strains (SD-M and LZC). It is noteworthy that two PEDV strains (HEXX-24 and HNXX-24XIA) were identified in one sample, and the HNXX-24XIA strain had a large deletion at amino acids 31-229 of the S protein. Moreover, a recombination event was observed in strain HEXX-24. Phylogenetic analysis based on the amino acid sequence of the PCV4 Cap protein revealed that PCV4 strains were divided into three genotypes: PCV4a1, PCV4a2, and PCV4b. Three strains in the present study belonged to PCV4a1, and they had a high degree of sequence similarity (>98% identity) to other PCV4 reference strains. This study not only provides technical support for field investigation of PEDV and PCV4 coinfection but also provides data for their prevention and control.


Assuntos
Circovirus , Coinfecção , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Filogenia , Circovirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , China/epidemiologia
2.
Biochem Biophys Res Commun ; 614: 175-182, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35598428

RESUMO

Maternal exposure to anesthetic agents could impose significant neurocognitive risks on the developing brain of infants. Myelin produced by oligodendrocytes (OLs) is essential for the development of brain. However, the concrete effect of general anesthesia on the development and myelination of OLs is still elusive. In this study, we aim to investigate postnatal myelination and neural behavior after maternal exposure to sevoflurane. Pregnant C57BL/6 J mice (gestational day 15.5) were anesthetized with 2.5% sevoflurane (in 97.5% O2) for 6 h. Cognitive function and motor coordination of the offspring mice were evaluated with novel object recognition, Morris water maze and accelerating rotarod tests. Myelination and development of hippocampal OLs were analyzed with immunohistochemistry, qRT-PCR, western blotting and electron microscopy. The functionality of myelin was measured with electrophysiology. Our results showed that sevoflurane anesthesia during the gestational period induced cognitive and motor impairments in offspring mice, accompanied with damages of myelin structure and down regulations of myelin-associated genes and proteins (including MBP, Olig1, PDGFRα, Sox10, etc.). The development and maturation of OLs were suppressed, and the axonal conduction velocity was declined. These results demonstrated that maternal sevoflurane exposure could induce detrimental effects on cognitive and motor functions in offspring, which might be associated with disrupted myelination of OLs in the hippocampus.


Assuntos
Exposição Materna , Transtornos Motores , Animais , Cognição , Feminino , Hipocampo/metabolismo , Humanos , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Motores/induzido quimicamente , Bainha de Mielina , Oligodendroglia/fisiologia , Gravidez , Sevoflurano/efeitos adversos
3.
J Pineal Res ; 71(4): e12771, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34585785

RESUMO

Sevoflurane (Sev) is one of the most widely used pediatric anesthetics. The major concern of neonatal repeated application of Sev is its potential long-term impairment of cognition and learning/memory, for which there still lacks effective treatment. At the cellular level, Sev exerts toxic effects in multiple aspects, making it difficult for effective interference. Melatonin is a pineal hormone regulated by and feedbacks to biological rhythm at physiological condition. Recent studies have revealed significant neuroprotective effects of exogenous melatonin or its agonists under various pathological conditions. Whether melatonin could prevent the long-term toxicity of Sev remains elusive. Here, we report that neonatal repeated Sev exposure up-regulated MT1 receptor in hippocampal neurons and oligodendrocytes. Pretreatment with melatonin significantly alleviated Sev-induced synaptic deficiency, dysmyelination, and long-term learning impairment. Both MT1-shRNA and MT1 knockout effectively blocked the protective effects of melatonin on synaptic development, myelination, and behavior performance. Interestingly, long-lasting suppression of Wnt signaling, instead of cAMP/PKA signaling, was observed in hippocampal neurons and oligodendrocytes after neonatal Sev exposure. Pharmacologically activating Wnt signaling rescued both the long-term synaptic deficits and dysmyelination induced by Sev. Further analysis showed that MT1 receptor co-expressed well with ß-catenin and Axin2 and bound to ß-catenin by its C-terminal. Melatonin pretreatment effectively rescued Sev-induced Wnt suppression. Wnt signaling inhibitor XAV939 significantly compromised the protective effects of melatonin. Taken together, our data demonstrated a beneficial effect of melatonin pretreatment on the long-term synaptic impairment and dysmyelination induced by neonatal Sev exposure, and a novel MT1 receptor-mediated interaction between melatonin and canonical Wnt signaling, indicating that melatonin may be clinically applied for improving the safety of pediatric Sev anesthesia.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Hipocampo , Humanos , Melatonina/farmacologia , Receptor MT2 de Melatonina , Sevoflurano/toxicidade , Via de Sinalização Wnt
4.
Glia ; 67(6): 1062-1075, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30648289

RESUMO

Chronic pain is one of the most prevalent chronic diseases in the world. The plastic changes of sensory neurons in dorsal root ganglia (DRG) have been extensively studied as the underlying periphery mechanism. Recent studies revealed that satellite cells, the major glial cells in DRG, also played important roles in the development/modulation of chronic pain. Whether DRG satellite glial cells generate new neurons as their counterparts in enteric nerve ganglia and carotid body do under pathological conditions remains poorly investigated. Here, we report that chronic pain induces proliferation and upregulation of progenitor markers in the sex-determining region Y-box 2 (Sox2)- and platelet-derived growth factor receptor alpha (PDGFRα)-positive satellite glial cells. BrdU incorporation assay revealed the generation of IB4- and CGRP-positive neurons, but not NF200-positive neurons in DRG ipsilateral to injury. Genetic fate tracings showed that PDGFRα-positive cells did not generate neurons, whereas Sox2-positive cells produced both IB4- and CGRP-positive neurons. Interestingly, glial fibrillary acidic protein-positive cells, a subpopulation of Sox2-positive satellites, only gave birth to IB4-positive neurons. Local persistent delivery of tetrodotoxin to the sciatic nerve trunk significantly reduced the pain-induced neurogenesis. Furthermore, patch-clamp studies demonstrated that these glia-derived new neurons could fire action potentials and respond to capsaicin. Taken together, our data demonstrated a chronic pain-induced nociceptive neurogenesis in DRG from Sox2-positive satellite cells, indicating a possible contribution of DRG neurogenesis to the pathology of chronic pain.


Assuntos
Dor Crônica/metabolismo , Gânglios Espinais/metabolismo , Neurogênese/fisiologia , Fatores de Transcrição SOXB1/biossíntese , Células Satélites Perineuronais/metabolismo , Animais , Dor Crônica/patologia , Gânglios Espinais/química , Gânglios Espinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXB1/análise , Células Satélites Perineuronais/química , Células Satélites Perineuronais/patologia
5.
Cereb Cortex ; 28(7): 2622-2635, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746630

RESUMO

Cell death and subsequent inflammation are 2 key pathological changes occurring in cerebral ischemia. Active microglia/macrophages play a double-edged role depending on the balance of their M1/M2 phenotypes. Necrosis is the predominant type of cell death following ischemia. However, how necrotic cells modulate the M1/M2 polarization of microglia/macrophages remains poorly investigated. Here, we reported that ischemia induces a rapid RIPK3/MLKL-mediated neuron-dominated necroptosis, a type of programmed necrosis. Ablating RIPK3 or MLKL could switch the activation of microglia/macrophages from M1 to the M2 type in the ischemic cortex. Conditioned medium of oxygen-glucose deprivation (OGD)-treated wild-type (WT) neurons induced M1 polarization, while that of RIPK3-/- neurons favored M2 polarization. OGD treatment induces proinflammatory IL-18 and TNFα in WT but not in RIPK3-/- neurons, which in turn upregulate anti-inflammatory IL-4 and IL-10. Furthermore, the expression of Myd88-a common downstream adaptor of toll-like receptors-is significantly upregulated in the microglia/macrophages of ischemic WT but not of RIPK3-/- or MLKL-/- cortices. Antagonizing the function of Myd88 could phenocopy the effects of RIPK3/MLKL-knockout on the polarization of microglia/macrophages and was neuroprotective. Our data revealed a novel role of necroptotic neurons in modulating the M1/M2 balance of microglia/macrophages in the ischemic cortex, possibly through Myd88 signaling.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/fisiopatologia , Polaridade Celular/fisiologia , Macrófagos/fisiologia , Microglia/fisiologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose/genética , Hipóxia Celular , Células Cultivadas , Córtex Cerebral/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/ultraestrutura , Fator 88 de Diferenciação Mieloide/metabolismo , Neurônios , Proteínas Quinases/genética , RNA Mensageiro/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
Molecules ; 20(4): 6419-31, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25867827

RESUMO

Salicornia bigelovii Torr. has been consumed not only as a popular kind of vegetable, but also as a medicinal plant to treat hypertension, cephalalgia, scurvy and cancer. The present study was designed to investigate its chemical components and cytotoxic activity. A new noroleanane-type triterpene saponin, bigelovii C (1), was separated and purified from Salicornia bigelovii Torr., along with four known triterpene saponins 2-5. The structure of bigelovii C was elucidated as 3-O-(6-O-butyl ester)-ß-D-glucuropyranosyl-23-aldehyde-30-norolean-12, 20 (29)-dien-28-oic acid-28-O-ß-D-glucopyranoside, according to various spectroscopic analysis and chemical characteristics. Besides Compounds 3 and 5, bigelovii C had potent cytotoxicity against three human cancer cell lines, MCF7 (breast cancer), Lovo (colon cancer) and LN229 (glioblastoma), especially MCF7. Bigelovii C inhibited the growth of MCF7 cells in dose- and time-dependent manners. Flow cytometry analysis revealed that the percentage of apoptotic cells significantly increased upon bigelovii C treatment. Rh123 staining assay indicated that bigelovii C reduced the mitochondrial membrane potential. The mechanism of cell death by bigelovii C may be attributed to the downregulation of Bcl-2 and upregulation of Bax, cleaved caspase-9, caspase-7 and PARP. These results suggested that bigelovii C may impart health benefits when consumed and should be regarded as a potential chemopreventative agent for cancer.


Assuntos
Saponinas/química , Saponinas/toxicidade , Estreptófitas/química , Triterpenos/química , Triterpenos/toxicidade , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Saponinas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Triterpenos/isolamento & purificação
7.
Zhong Yao Cai ; 38(4): 751-3, 2015 Apr.
Artigo em Zh | MEDLINE | ID: mdl-26672340

RESUMO

OBJECTIVE: To study the chemical constituents of Suaeda glauca. METHODS: The chemical constituents were isolated and purified with several separation and purification techniques. Their structures were identified by physicochemical properties and various spectroscopic methods. RESULTS: Ten compounds were isolated from the ethyl acetate fraction as lignoceric acid (1), ß-amyrin-n-nonyl ether(2), ß-sitosterol(3), ß-daucosterol(4), quercetin(5), luteolin(6), luteolin-7-O-ß-D-glucoside(7), isorhamnetin(8), scopoletin (9) and stigmasterol(10). CONCLUSION: Compounds 1, 2, 6, 7, 8, 9 and 10 are isolated from Suaeda genus for the first time and compounds 3 - 5 are isolated from this plant for the first time.


Assuntos
Chenopodiaceae/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Acetatos , Glucosídeos , Luteolina , Ácido Oleanólico/análogos & derivados , Compostos Fitoquímicos/isolamento & purificação , Quercetina/análogos & derivados , Sitosteroides , Estigmasterol
8.
Zhong Yao Cai ; 37(12): 2207-9, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-26080504

RESUMO

OBJECTIVE: To study chemical constituents of the roots of Lonicera macranthoides. METHODS: The chemical constituents were isolated and purified by means of several chromatographic techniques and their structures were elucidated by spectroscopic methods. RESULTS: Seven compounds were isolated and identified as ribenol (1), excoecarin C (2), 18-hydroxy-13-epi-manoyloxide (3), asiatic acid (4), oleanolic acid (5), ß-sitosterol (6) and ß-daucosterol (7). CONCLUSION: Compounds 1-4 are obtained from this genus for the first time. Compound 5 is obtained from this plant for the first time. All the compounds are found from the roots of Lonicera mac- ranthoides for the first time.


Assuntos
Lonicera/química , Compostos Fitoquímicos/química , Raízes de Plantas/química , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Sitosteroides/química , Sitosteroides/isolamento & purificação
9.
Plants (Basel) ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891378

RESUMO

Soil moisture is a key factor in arid ecosystems, with local variations influenced by topography and vegetation. Understanding this relationship is crucial for combating desertification. Employing ANOVA, Mean Decrease Accuracy (MDA) analysis from random forest modeling and Structural Equation Modeling (SEM), this study investigates the distribution of soil moisture and its associations with topographic and vegetative factors across four micro-geomorphic units in the Tengger Desert, China. Significant heterogeneity in soil moisture across various layers and locations, including windward and leeward slopes and the tops and bottoms of dunes, was observed. Soil moisture generally increases from the surface down to 300 cm, with diminishing fluctuations at greater depths. Soil moisture peaks in the surface and middle layers on windward slopes and in deep layers at the bottom of dunes, exhibiting an initial rise and then a decline on windward slopes. Topographic (including slope direction and elevation difference) and vegetation (including shrub and herb coverage) factors significantly influence soil moisture across three depth layers. Topographic factors negatively affect soil moisture directly, whereas vegetation positively influences it indirectly, with shrub and herb abundance enhancing moisture levels. These insights inform ecological management and the formulation of soil moisture-conservation strategies in arid deserts. The study underscores customizing sand-binding vegetation to various micro-geomorphic dune units.

10.
Neurosci Bull ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907076

RESUMO

Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.

11.
Neurotox Res ; 42(3): 27, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819761

RESUMO

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Assuntos
Animais Recém-Nascidos , Astrócitos , Disfunção Cognitiva , Ferroptose , Isoflurano , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isoflurano/toxicidade , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Camundongos , Anestésicos Inalatórios/toxicidade , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Front Behav Neurosci ; 18: 1387447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813469

RESUMO

Introduction: Autism spectrum disorder (ASD) is a group of diseases often characterized by poor sociability and challenges in social communication. The anterior cingulate cortex (ACC) is a core brain region for social function. Whether it contributes to the defects of social communication in ASD and whether it could be physiologically modulated to improve social communication have been poorly investigated. This study is aimed at addressing these questions. Methods: Fragile X mental retardation 1 (FMR1) mutant and valproic acid (VPA)-induced ASD mice were used. Male-female social interaction was adopted to elicit ultrasonic vocalization (USV). Immunohistochemistry was used to evaluate USV-activated neurons. Optogenetic and precise target transcranial magnetic stimulation (TMS) were utilized to modulate anterior cingulate cortex (ACC) neuronal activity. Results: In wild-type (WT) mice, USV elicited rapid expression of c-Fos in the excitatory neurons of the left but not the right ACC. Optogenetic inhibition of the left ACC neurons in WT mice effectively suppressed social-induced USV. In FMR1-/-- and VPA-induced ASD mice, significantly fewer c-Fos/CaMKII-positive neurons were observed in the left ACC following USV compared to the control. Optogenetic activation of the left ACC neurons in FMR1-/- or VPA-pretreated mice significantly increased social activity elicited by USV. Furthermore, precisely stimulating neuronal activity in the left ACC, but not the right ACC, by repeated TMS effectively rescued the USV emission in these ASD mice. Discussion: The excitatory neurons in the left ACC are responsive to socially elicited USV. Their silence mediates the deficiency of social communication in FMR1-/- and VPA-induced ASD mice. Precisely modulating the left ACC neuronal activity by repeated TMS can promote the social communication in FMR1-/- and VPA-pretreated mice.

13.
Zool Res ; 45(3): 663-678, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766748

RESUMO

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Assuntos
Animais Recém-Nascidos , Disfunção Cognitiva , Proteoma , Sevoflurano , Comportamento Social , Animais , Sevoflurano/efeitos adversos , Camundongos , Disfunção Cognitiva/induzido quimicamente , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/toxicidade , Anestésicos Inalatórios/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Masculino , Comportamento Animal/efeitos dos fármacos
14.
Foods ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444180

RESUMO

Weight loss associated with fruit texture during storage has received numerous reports; however, no research has been conducted on the mathematical relationships between weight loss and textural traits of table grapes stored at cold and ambient temperatures. In this study, it was found that the weight loss of 'Red Globe' was in the range of 0 to 0.0487, 0 to 0.0284 and 0 to 0.0199 compared to 0 to 0.0661, 0 to 0.0301 and 0 to 0.028 of 'Wink' at 13 °C, 3 °C, and 0 °C of storage for 13 days. Stored for 13 days at 13 °C, 3 °C, and 0 °C, the range of the textural traits of failure force, strain and penetration work in 'Red Globe' were 6.274 to 3.765, 6.441 to 3.867, 6.321 to 4.014; 51.931 to 11.114, 51.876 to 13.002, 51.576 to 20.892; 21.524 to 13.225, 21.432 to 14.234, 21.321 to 15.198 in contrast to in 'Wink' of 4.4202 to 2.2292, 4.4197 to 2.653, 4.4371 to 2.8199 and 15.674 to 2.7881, 15.776 to 4.1431, 15.704 to 5.702 and 12.922 to 7.754, 12.909 to 8.021, 12.915 to 8.407. Meanwhile, the weight loss and textural traits of two table grapes were examined using time-dependent and weight loss-dependent modeling at 13 °C, 3 °C, and 0 °C of storage. The Logistic, ExpDec1, and ExpDec2 models, as well as the Boltzmann model, were identified as the best fit for the obtained data. The equations proved to be more effective in characterizing the change in weight loss and texture of 'Red Globe' and 'Wink,' with the best equations suited to the weight loss and textural parameters having an average mean standard error of 2.89%. The viability of the established models was evaluated, and parametric confidence intervals of the equations were proposed to fit different grape cultivars. According to the findings, the weight loss and texture of the two grape cultivars could be accurately predicted by the established models; additionally, the results showed that cold storage is better for the quality of table grapes and that weight loss can predict the textural quality of table grapes. This study provides a theoretical framework for optimum storage temperature together with a significantly convenient and quick approach to measure the texture of grapes for fruit dealers and enterprises.

15.
Front Mol Neurosci ; 16: 1151162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089691

RESUMO

Pregnancy exposure of valproic acid (VPA) is widely adopted as a model of environmental factor induced autism spectrum disorder (ASD). Increase of excitatory/inhibitory synaptic transmission ratio has been proposed as the mechanism of VPA induced ASD. How this happened, particularly at the level of excitatory neuron differentiation in human neural progenitor cells (NPCs) remains largely unclear. Here, we report that VPA exposure remarkably inhibited human NPC proliferation and induced excitatory neuronal differentiation without affecting inhibitory neurons. Following VPA treatment, mitochondrial dysfunction was observed before neuronal differentiation, as showed by ultrastructural changes, respiratory complex activity, mitochondrial membrane potential and oxidation levels. Meanwhile, extracellular acidification assay revealed an elevation of glycolysis by VPA stimulation. Interestingly, inhibiting glycolysis by 2-deoxy-d-glucose-6-phosphate (2-DG) efficiently blocked the excitatory neuronal differentiation of human NPCs induced by VPA. Furthermore, 2-DG treatment significantly compromised the VPA-induced expression of H3ac and H3K9ac, and the VPA-induced binding of H3K9ac on the promoter of Ngn2 and Mash1, two key transcription factors of excitatory neuron fate determination. These data, for the first time, demonstrated that VPA biased excitatory neuron differentiation by glycolysis-mediated histone acetylation of neuron specific transcription factors.

16.
Front Cell Dev Biol ; 11: 1229788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576598

RESUMO

During development, apoptosis removes redundant cells and ensures proper organ morphogenesis. Necrosis is long known as an adult-bound inflammatory and pathologic cell death. Whether there exists physiological necrosis during early development has been speculated but yet clearly demonstrated. Here, we report evidence of necroptosis, a type of programmed necrosis, specifically in perivascular cells of cerebral cortex and skin at the early stage of development. Phosphorylated Mixed Lineage Kinase Domain-Like protein (MLKL), a key molecule in executing necroptosis, co-expressed with blood endothelial marker CD31 and venous-lymphatic progenitor marker Sox18. Depletion of Mlkl did not affect the formation of blood vessel network but increased the differentiation of venous-lymphatic lineage cells in postnatal cerebral cortex and skin. Consistently, significant enhancement of cerebrospinal fluid diffusion and lymphatic drainage was found in brain and skin of Mlkl-deficient mice. Under hypobaric hypoxia induced cerebral edema and inflammation induced skin edema, Mlkl mutation significantly attenuated brain-blood-barrier damage and edema formation. Our data, for the first time, demonstrated the presence of physiological vascular-associated necroptosis and its potential involvement in the development of venous-lymphatic vessels.

17.
Microbiol Spectr ; : e0433322, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728419

RESUMO

A novel circovirus species was identified in farmed pigs and designated porcine circovirus 4 (PCV4); it has recently been proved to be pathogenic to piglets. However, little is known about its cross-species transmission, and there is no evidence of PCV4 in dogs. A total of 217 fecal samples were collected from diarrheal dogs in Henan Province, China, and tested for the presence of PCV4 using a real-time PCR assay. Among the 217 samples, the total positivity rate for PCV4 was 5.99% (13/217 samples), with rates of 7.44% and 4.17% in 2020 and 2021, respectively. PCV4 was detected in dogs in 6 of 10 cities, demonstrating that PCV4 could be detected in dogs in Henan Province, China. One PCV4 strain (HN-Dog) was sequenced in this study and shared high levels of identity (97.9% to 99.6%) with reference strains at the genome level. Phylogenetic analysis based on complete genome sequences of HN-Dog and 42 reference strains showed that the HN-Dog strain was closely related to 3 PCV4 reference strains (from pig, raccoon dog, and fox) but differed genetically from other viruses in the genus Circovirus. Three genotypes, i.e., PCV4a, PCV4b, and PCV4c, were confirmed by phylogenetic analysis of complete genome sequences of 42 PCV4 strains, and one amino acid variation in Rep protein (V239L) and three amino acid variations in Cap protein (N27S, R28G, and M212L) were considered conserved genotype-specific molecular markers. In conclusion, the present study is the first to report the discovery of the PCV4 genome in dogs, and the association between PCV4 infection and diarrhea warrants further study. IMPORTANCE This study is the first to report the presence of PCV4 in dogs worldwide, and the first complete genome sequence was obtained from a dog affected with diarrhea. Three genotypes of PCV4 strains (PCV4a, PCV4b, and PCV4c) were determined, as supported by specific amino acid markers (V239L for open reading frame 1 [ORF1] and N27S R28G and M212L for ORF2). These findings help us understand the current status of intestinal infections in pet dogs in Henan Province, China, and also prompted us to accelerate research on the pathogenesis, epidemiology, and cross-species transmission of PCV4.

18.
Comp Immunol Microbiol Infect Dis ; 98: 102009, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37390696

RESUMO

Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs with severe clinical disease in Hunan province of China, and also identified in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). To further investigate the epidemic profile and genetic characteristics of the two viruses, 150 clinical samples were collected from 9 swine farms in Shaanxi and Henan provinces of China, and a SYBR Green I-based duplex quantitative real-time polymerase chain reaction (qPCR) was developed for detecting PCV4 and PRRSV simultaneously. The results showed the limits of detection were 41.1 copies/µL and 81.5 copies/µL for PCV4 and PRRSV, respectively. The detection rates of PCV4 and PRRSV were 8.00% (12/150) and 12.00% (18/150) respectively, and a case of co-infection with PCV4 and PRRSV was found in the lung tissue of a suckling pig with respiratory symptom. Subsequently, the complete genomic sequences of five PCV4 strains were obtained, of which one PCV4 strain (SX-ZX) was from Shaanxi province, and these strains were 1770 nucleotides in length and had 97.7%-99.4% genomic identity with 59 PCV4 reference strains. The genome characteristic of the SX-ZX strain was evaluated from three aspects, a "stem-loop" structure, ORF1 and ORF2. As essential elements for the replication, the 17-bp iterative sequence was predicted as the stem structure, in which three non-tandem hexamers were found at downstream with H1/H2 (12-CGGCACACTTCGGCAC-27) as the minimal binding site. Three of the five PCV4 strains were clustered into PCV4b, which was composed of Suidae, fox, dairy cow, dog and raccoon dog. Phylogenetic analysis revealed that seven PRRSV strains from the present study were clustered into the PRRSV-2 genotype. Collectively, these data extend our understanding of the genome characteristic of PCV4 as well as the molecular epidemiology and the genetic profile of PCV4 and PRRSV.


Assuntos
Doenças dos Bovinos , Circovirus , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Feminino , Bovinos , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Circovirus/genética , Filogenia , Doenças dos Suínos/diagnóstico , China/epidemiologia
19.
EMBO Mol Med ; 15(6): e17101, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37078424

RESUMO

Social dysfunction is the core syndrome of autism spectrum disorder (ASD) and lacks effective medicine. Although numerous risk genes and relevant environmental factors have been identified, the convergent molecular mechanism underlying ASD-associated social dysfunction remains largely elusive. Here, we report aberrant activation of canonical Wnt signaling and increased glycolysis in the anterior cingulate cortex (ACC, a key brain region of social function) of two ASD mouse models (Shank3-/- and valproic acid-treated mice) and their corresponding human neurons. Overexpressing ß-catenin in the ACC of wild-type mice induces both glycolysis and social deficits. Suppressing glycolysis in ASD mice partially rescued synaptic and social phenotype. Axin2, a key inhibitory molecule in Wnt signaling, interacts with the glycolytic enzyme enolase 1 (ENO1) in ASD neurons. Surprisingly, an Axin2 stabilizer, XAV939, effectively blocked Axin2/ENO1 interaction, switched glycolysis/oxidative phosphorylation balance, promoted synaptic maturation, and rescued social function. These data revealed excessive neuronal Wnt-glycolysis signaling as an important underlying mechanism for ASD synaptic deficiency, indicating Axin2 as a potential therapeutic target for social dysfunction.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Camundongos , Proteína Axina/genética , Proteína Axina/metabolismo , Modelos Animais de Doenças , Glicólise , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Via de Sinalização Wnt/fisiologia
20.
Zhong Yao Cai ; 35(2): 231-4, 2012 Feb.
Artigo em Zh | MEDLINE | ID: mdl-22822669

RESUMO

OBJECTIVE: To study the water-soluble chemical constituents of the flower buds of Lonicera macranthoides. METHODS: The chemical constituents were isolated and purified by means of chromatographic techniques and their structures were elucidated by spectroscopic methods. RESULTS: Six compounds were isolated and identified as trans-linalool-3,7-oxide-6-O-beta-D-glucopyranoside(1), secol oganoside(2), secoxyloganin(3),chlorogenic acid(4), caffeic acid(5), sucrose(6). CONCLUSION: Compound 1 is isolated from nature as a single compound for the first time, compounds 2-3 are isolated from this plant for the first time.


Assuntos
Flores/química , Lonicera/química , Extratos Vegetais/isolamento & purificação , Ácido Clorogênico/química , Ácido Clorogênico/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Glucosídeos/química , Glucosídeos/isolamento & purificação , Glucosídeos Iridoides/química , Glucosídeos Iridoides/isolamento & purificação , Extratos Vegetais/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA