Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Am Chem Soc ; 146(7): 4842-4850, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38295276

RESUMO

Although polylactic acid (PLA) represents a pivotal biodegradable polymer, its biodegradability has inadvertently overshadowed the development of effective recycling techniques, leading to the potential wastage of carbon resources. The photoreforming-recycling approach for PLA exhibits significant potential in terms of concepts and methods. However, the reaction faces enormous challenges due to the limited selectivity of organic oxidation products as well as the increased costs and challenging separation of organic products associated with alkali-solution-assisted prehydrolysis. Herein, we report an alkali-free direct-photoreforming pathway for real-world PLA plastics utilizing the Pd-CdS photocatalyst under visible-light illumination, obviating the need for chemical pretreatment of PLA. The devised pathway successfully produces H2 at a rate of 49.8 µmol gcat.-1 h-1, sustained over 100 h, and exhibits remarkable selectivity toward pyruvic acid (95.9% in liquid products). Additionally, experimental findings elucidate that Pd sites not only function as a typical cocatalyst for enhancing the photocatalytic evolution of H2 but also suppress competitive side reactions (e.g., lactic acid coupling or decarboxylation), consequently augmenting the yield and selectivity of pyruvic acid and H2. This investigation provides a straightforward and sustainable direct-photoreforming route capable of simultaneously mitigating and repurposing plastic waste into valuable chemicals, thus offering a promising solution to the current environmental challenges.

2.
Angew Chem Int Ed Engl ; 62(24): e202219340, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37060210

RESUMO

Enormous advances in photothermal catalysis have been made over the years, whereas the temperature assessment still remains controversial in the majority of photothermal catalytic systems. Herein, we methodically uncovered the phenomenon of temperature determination bias arising from prominent temperature differences in gas-solid photothermal catalytic systems, which extensively existed yet has been overlooked in most relevant cases. To avoid the interference of temperature bias, we developed a universal protocol for reliable temperature evaluation of gas-solid photothermal catalytic reactions, with emphasis on eliminating the temperature gradient and temperature fluctuation of catalyst layer via optimizing the reaction system. This work presents a functional and credible practice for temperature detection, calling attention to addressing the effects of temperature differences, and reassessing the actual temperature-based performances in gas-solid photothermal catalysis.

3.
Angew Chem Int Ed Engl ; 62(25): e202304452, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37083180

RESUMO

Photothermal catalysis is one of the most promising green catalytic technologies, while distinguishing the effects of hot electrons and local heating remains challenging. Herein, we reported that the actual reaction temperature of photothermal ammonia synthesis over carbon-supported Ru catalyst can be measured based on Le Chatelier's principle, enabling the hot-electron contribution to be quantified. By excluding local heating effects, we established that the activation energy via photothermal catalysis was much lower than that of thermocatalysis (54.9 vs. 126.0 kJ mol-1 ), stemming from hot-electron injection lowering the energy barriers for both N2 dissociation and intermediates hydrogenation. Furthermore, hot-electron injection acted to suppress carbon support methanation, giving the catalyst outstanding operational stability over 1000 h. This work provides new insights into the hot-electron effects in ammonia synthesis, guiding the design of high-performance photothermal catalysts.


Assuntos
Carbono , Rutênio , Amônia , Elétrons , Catálise
4.
Angew Chem Int Ed Engl ; 62(23): e202304301, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026510

RESUMO

Methane conversion to higher hydrocarbons requires harsh reaction conditions due to high energy barriers associated with C-H bond activation. Herein, we report a systematic investigation of photocatalytic oxidative coupling of methane (OCM) over transition-metal-loaded ZnO photocatalysts. A 1 wt % Au/ZnO delivered a remarkable C2 -C4 hydrocarbon production rate of 683 µmol g-1 h-1 (83 % C2 -C4 selectivity) under light irradiation with excellent photostability over two days. The metal type and its interaction with ZnO strongly influence the selectivity toward C-C coupling products. Photogenerated Zn+ -O- sites enable CH4 activation to methyl intermediates (*CH3 ) migrating onto adjacent metal nanoparticles. The nature of the *CH3 -metal interaction controls the OCM products. In the case of Au, strong d-σ orbital hybridization reduces metal-C-H bond angles and steric hindrance, thereby enabling efficient methyl coupling. Findings indicate the d-σ center may be a suitable descriptor for predicting product selectivity during OCM over metal/ZnO photocatalysts.

5.
Angew Chem Int Ed Engl ; 61(51): e202211469, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36264279

RESUMO

Nitrate is an important raw material for chemical fertilizers, but it is industrially manufactured in multiple steps at high temperature and pressure, urgently motivating the design of a green and sustainable strategy for nitrate production. We report the photosynthesis of nitrate from N2 and O2 on commercial TiO2 in a flow reactor under ambient conditions. The TiO2 photocatalyst offered a high nitrate yield of 1.85 µmol h-1 as well as a solar-to-nitrate energy conversion efficiency up to 0.13 %. We combined reactivity and in situ Fourier transform infrared spectroscopy to elucidate the mechanism of nitrate formation and unveil the special role of O2 in N≡N bond dissociation. The mechanistic insight into charge-involved N2 oxidation was further demonstrated by in situ transient absorption spectroscopy and electron paramagnetic resonance. This work exhibits the mechanistic origin of N2 photooxidation and initiates a potential method for triggering inert catalytic reactions.

6.
Angew Chem Int Ed Engl ; 60(40): 21728-21731, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34328664

RESUMO

Photo/electrocatalytic ammonia synthesis has recently developed fast while the ammonia yields over state-of-the-art photo/electrocatalysts are still very moderate. Such low concentration of synthesized NH3 brings about a challenge to the reliable quantification of the product in photo/electrocatalysis. Notably, we found that the quantitative detection of ammonia concentration below 0.2 ppm is error-prone, which is likely the case happening in the majority of photo/electrocatalytic NH3 synthesis, thus arising concerns about the rationality and accuracy for low-concentration ammonia quantification in these processes. Herein, we discuss the methodology used and analyze the reliability of various detection methods for the detection of trace ammonia in aqueous media. The challenges facing the detection of low concentration of ammonia in photo/electrocatalysis can be overcome by integration with multiple detection methods. According to the data presented, we also propose an effective criterion for precise quantification of ammonia, avoiding the unreasonable comparisons in photo/electrocatalytic ammonia synthesis.

7.
Angew Chem Int Ed Engl ; 60(5): 2554-2560, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090662

RESUMO

Cu2 O, a low-cost, visible light responsive semiconductor photocatalyst represents an ideal candidate for visible light driven photocatalytic reduction of N2 to NH3 from the viewpoint of thermodynamics, but it remains unexplored. Reported here is the successful synthesis of uniformly sized and ultrafine Cu2 O platelets, with a lateral size of <3 nm, by the in situ topotactic reduction of a CuII -containing layered double hydroxide with ascorbic acid. The supported ultrafine Cu2 O offered excellent performance and stability for the visible light driven photocatalytic reduction of N2 to NH3 (the Cu2 O-mass-normalized rate as high as 4.10 mmol g Cu 2 O -1 h-1 at λ>400 nm), with the origin of the high activity being long-lived photoexcited electrons in trap states, an abundance of exposed active sites, and the underlying support structure. This work guides the future design of ultrafine catalysts for NH3 synthesis and other applications.

8.
Angew Chem Int Ed Engl ; 60(6): 3290-3298, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33105050

RESUMO

Designing bifunctional catalysts capable of driving the electrochemical hydrogen evolution reaction (HER) and also H2 evolution via the hydrolysis of hydrogen storage materials such as ammonia borane (AB) is of considerable practical importance for future hydrogen economies. Herein, we systematically examined the effect of tensile lattice strain in CoRu nanoalloys supported on carbon quantum dots (CoRu/CQDs) on hydrogen generation by HER and AB hydrolysis. By varying the Ru content, the lattice parameters and Ru-induced lattice strain in the CoRu nanoalloys could be tuned. The CoRu0.5 /CQDs catalyst with an ultra-low Ru content (1.33 wt.%) exhibited excellent catalytic activity for HER (η=18 mV at 10 mA cm-2 in 1 M KOH) and extraordinary activity for the hydrolysis of AB with a turnover frequency of 3255.4 mol ( H 2 ) mol-1 (Ru) min-1 or 814.7 mol ( H 2 ) mol-1 (cat) min-1 at 298 K, respectively, representing one of the best activities yet reported for AB hydrolysis over a ruthenium alloy catalyst. Moreover, the CoRu0.5 /CQDs catalyst displayed excellent stability during each reaction, including seven alternating cycles of HER and AB hydrolysis. Theoretical calculations revealed that the remarkable catalytic performance of CoRu0.5 /CQDs resulted from the optimal alloy electronic structure realized by incorporating small amounts of Ru, which enabled fast interfacial electron transfer to intermediates, thus benefitting H2 evolution kinetics. Results support the development of new and improved catalysts HER and AB hydrolysis.

9.
Cell Mol Life Sci ; 76(22): 4525-4538, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31139846

RESUMO

Dosage compensation, which is achieved by X-chromosome inactivation (XCI) in female mammals, ensures balanced X-linked gene expression levels between the sexes. Although eutherian mammals commonly display random XCI in embryonic and adult tissues, imprinted XCI has also been identified in extraembryonic tissues of mouse, rat, and cow. Little is known about XCI in pigs. Here, we sequenced the porcine XIST gene and identified an insertion/deletion mutation between Asian- and Western-origin pig breeds. Allele-specific analysis revealed biallelic XIST expression in porcine ICSI blastocysts. To investigate the XCI pattern in porcine placentas, we performed allele-specific RNA sequencing analysis on individuals from reciprocal crosses between Duroc and Rongchang pigs. Our results were the first to reveal that random XCI occurs in the placentas of pigs. Next, we investigated the H3K27me3 histone pattern in porcine blastocysts, showing that only 17-31.8% cells have attained XCI. The hypomethylation status of an important XIST DMR (differentially methylated region) in gametes and early embryos demonstrated that no methylation is pre-deposited on XIST in pigs. Our findings reveal that the XCI regulation mechanism in pigs is different from that in mice and highlight the importance of further study of the mechanisms regulating XCI during early porcine embryo development.


Assuntos
Impressão Genômica/genética , Placenta/metabolismo , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Alelos , Animais , Blastocisto/metabolismo , Células Cultivadas , Metilação de DNA/genética , Mecanismo Genético de Compensação de Dose/genética , Feminino , Histonas/genética , Camundongos , Gravidez , Suínos
11.
Nanotechnology ; 27(50): 505401, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27855122

RESUMO

Developing a high energy density micro-supercapacitor still remains a big challenge. In this paper, a two-dimensional (2D) CoMoO4 ultrathin nanosheet (NS)-based asymmetric supercapacitor (ASC) is fabricated. It is found that the CoMoO4 NS electrode processes a high specific capacitance (153.2 F g-1) at a current density of 1 mA cm-2 and this ASC can deliver an energy density of 0.313 mWh cm-3 at a power density of 80 mW cm-3, which is higher than that reported in the literature. Moreover, the ASC can drive a light emitting diode (3 mm diameter, red) to work for 6 min after being charged for 10 s. After 5000 cycles, 77.37% of capacitance still remains. We maintain that the ultrathin thickness can significantly shorten the diffusion paths for both electrons and ions, thus leading to fast electron transport and ion diffusion rates. Our results demonstrate that 2D ultrathin NSs could be a new, promising candidate for energy conversion/storage devices, which could offer more accommodating sites for ion intercalation.

12.
J Phys Chem A ; 120(17): 2657-66, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27070507

RESUMO

Today, research is increasingly focused on surface control of semiconductors; however, very little is known about the effect of bulk chemical bonds on photoelectrochemistry properties. In this report, Bi2O(OH)2SO4 with and without specific Bi-O-S bonds (WB and WOB) is synthesized via hydrothermal and water bath methods, respectively, and we reveal the Bi-O-S bond-dependent photoelectrochemistry properties. Both WB and WOB belong to a monoclinic space group (P21/c), but the newly synthesized WB has different unit cell parameters of a = 8.062 Å, b = 8.384 Å, and c = 5.881 Å, compared with WOB (a = 7.692(3) Å, b = 13.87(1) Å, c = 5.688(2) Å). Compared with WOB (4.18 eV), WB has a narrower band gap (3.6 eV), higher electrical conductivity, and an increased charge separation efficiency. It is found that the electrons are easy to transfer along the newly formed Bi-O-S bond in bulk; thus, the Bi-O-S bonds in WB have efficiently improved the photoelectrochemistry properties. As a result, WB exhibits a 1.1 times higher photocatalytic activity than WOB for the degradation of RhB under ultraviolet light irradiation (<420 nm). This helps us to understand the photoelectrochemistry properties from crystal bulk, but not merely from the crystal surface; thus, this study provides a new idea for improved photoelectrochemistry properties of semiconductors.

13.
iScience ; 27(6): 110088, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947498

RESUMO

While photocatalytic technology has brought additional opportunities and possibilities for the green conversion and sustainable development of ammonium-based nitrogen fertilizers, the low activation efficiency of the molecular N2 has impeded its further application feasibility. Here to address the concern, we designed an amorphous molybdenum hydroxide anchored on the ultrathin magnesium-aluminum layered double hydroxide (Mo@MgAl-LDH) nanosheets for benefiting the N2 photofixation to NH3. With the aid of the designed amorphous Mo(V) species, the pristine MgAl-LDH exhibited a considerable performance of nitrogen photofixation under visible light irradiation (NH3 production rate of 114.4 µmol g-1 h-1) due to the improved N2 activation efficiency. The work demonstrated a feasible strategy for nitrogen photofixation using amorphous Mo(V) species, which may also deliver a novel inspiration for the development of amorphous photocatalysts toward the photoactivation of molecular N2.

14.
Sci Adv ; 10(17): eadn0947, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669338

RESUMO

Organic electrosynthesis in aqueous media is presently hampered by the poor solubility of many organic reactants and thus low purity of liquid products in electrolytes. Using the electrooxidation of benzyl alcohol (BA) as a model reaction, we present a "sandwich-type" organic-solid-water (OSW) system, consisting of BA organic phase, KOH aqueous electrolyte, and porous anodes with Janus-like superwettability. The system allows independent diffusion of BA molecules from the organic phase to electrocatalytic active sites, enabling efficient electrooxidation of high-concentration BA to benzaldehyde (97% Faradaic efficiency at ~180 mA cm-2) with substantially reduced ohmic loss compared to conventional solid-liquid systems. The confined organic-water boundary within the electrode channels suppresses the interdiffusion of molecules and ions into the counterphase, thus preventing the hydration and overoxidation of benzaldehyde during long-term electrocatalysis. As a result, the direct production of high-purity benzaldehyde (91.7%) is achieved in a flow cell, showcasing the effectiveness of electrocatalysis over OSW interfaces for the one-step synthesis of high-purity organic compounds.

15.
Adv Mater ; 36(9): e2309251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37897297

RESUMO

The construction of platinum (Pt) atomic layers is an effective strategy to improve the utilization efficiency of Pt atoms in electrocatalysis, thus is important for reducing the capital costs of a wide range of energy storage and conversion devices. However, the substrates used to grow Pt atomic layers are largely limited to noble metals and their alloys, which is not conducive to reducing catalyst costs. Herein, low-cost chromium nitride (CrN) is utilized as a support for the loading of epitaxial ultrathin Pt atomic layers via a simple thermal ammonolysis method. Owing to the strong anchoring and electronic regulation of Pt atomic layers by CrN, the obtained Pt atomic layers catalyst (containing electron-deficient Pt sites) exhibits excellent activity and endurance for the formic acid oxidation reaction, with a mass activity of 5.17 A mgPt -1 that is 13.6 times higher than that of commercial Pt/C catalyst. This novel strategy demonstrates that CrN can replace noble metals as a low-cost substrate for constructing Pt atomic layers catalysts.

16.
Medicine (Baltimore) ; 102(8): e33079, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827010

RESUMO

BACKGROUND: The aim of this study was to assess the efficiency and safety of acupuncture in core symptomatic improvement of children with autism spectrum disorder (ASD). METHODS: We searched the following databases: Cochrane Library, PubMed, Embase, Medline, China National Knowledge Infrastructure (CNKI), Wanfang, Chinese Science and Technology Periodical (VIP) and Chinese Biological Medicine (CBM), from 1 January 2012 to 25 September 2022. The Autism Behavior Checklist (ABC), Childhood Autism Rating Scale (CARS), and Autism Treatment Evaluation Checklist (ATEC) were adopted as outcome indicators. Three reviewers independently assessed the risk of bias (ROB) and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE)assessment. Utilizing Review Manager (RevMan) 5.3 and Stata 12.0, data were analyzed. RESULTS: A total of 38 trials were included, and 2862 participants participated in qualitative synthesis and meta-analysis. Only 1 trial was assessed as having a low ROB, and 37 trials were assessed as having an overall high ROB. The quality of evidence for most indicators were considered very low by the GRADE criteria. The results showed that acupuncture groups might have a higher clinical effective rate than nonacupuncture groups (relative risk [RR] = 1.33,95% confidence interval [CI] = 1.25-1.41; heterogeneity: x2=18.15, P = .64, I2 = 0%). Regarding changes in ABC scores, the acupuncture groups might exhibit greater decrease than nonacupuncture groups (MMD = -6.06, 95%CI = -7.25 to -4.87, P < .00001; heterogeneity: x2 =73.37, P = .03, I2 = 77%). In terms of changes in CARS score, acupuncture group may benefit more than nonacupuncture group (MMD = -3.93, 95%CI = 4.90 to -2.95, P < .00001; heterogeneity: x2=234.47, P < .00001, I2 = 90%). Additionally, in terms of ATEC score, acupuncture groups showed more benefit than nonacupuncture groups (MMD = -10.24, 95%CI = -13.09 to -7.38, P < .00001; heterogeneity: x2=45.74, P = .04, I2 = 85%). Both subgroup analysis and sensitivity analysis are existing heterogeneity. Only 1 RCT study involved adverse events with mild symptoms that did not interfere with treatment and evaluation. CONCLUSION: Children with ASD may benefit from acupuncture because of its effectiveness and safety. Nevertheless, given the low quality of the evidence for the assessed outcomes and the high ROB of analyzed trials, the results should be regarded with caution.


Assuntos
Terapia por Acupuntura , Transtorno do Espectro Autista , Transtorno Autístico , Medicina Tradicional do Leste Asiático , Humanos , Criança , Transtorno do Espectro Autista/terapia , Terapia por Acupuntura/métodos , Resultado do Tratamento
17.
ChemSusChem ; 16(22): e202300944, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37528771

RESUMO

Drawing inspiration from the enzyme nitrogenase in nature, researchers are increasingly delving into semiconductor photocatalytic nitrogen fixation due to its similar surface catalytic processes. Herein, we reported a facile and efficient approach to achieving the regulation of ZnO/ZnCr2 O4 photocatalysts with ZnCr-layered double hydroxide (ZnCr-LDH) as precursors. By optimizing the composition ratio of Zn/Cr in ZnCr-LDH to tune interfaces, we can achieve an enhanced nitrogen photofixation performance (an ammonia evolution rate of 31.7 µmol g-1 h-1 using pure water as a proton source) under ambient conditions. Further, photo-electrochemical measurements and transient surface photovoltage spectroscopy revealed that the enhanced photocatalytic activity can be ascribed to the effective carrier separation efficiency, originating from the abundant composite interfaces. This work further demonstrated a promising and viable strategy for the synthesis of nanocomposite photocatalysts for nitrogen photofixation and other challenging photocatalytic reactions.

18.
Nat Commun ; 14(1): 4242, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454122

RESUMO

The widespread use of polyolefin plastics in modern societies generates huge amounts of plastic waste. With a view toward sustainability, researchers are now seeking novel and low-cost strategies for recycling and valorizing polyolefin plastics. Herein, we report the successful development of a photothermal catalytic recycling system for transforming polyolefin plastics into liquid/waxy fuels under concentrated sunlight or xenon lamp irradiation. Photothermal heating of a Ru/TiO2 catalyst to 200-300 °C in the presence of polyolefin plastics results in intimate catalyst-plastic contact and controllable hydrogenolysis of C-C and C-H bonds in the polymer chains (mediated by Ru sites). By optimizing the reaction temperature and pressure, the complete conversion of waste polyolefins into valuable liquid fuels (86% gasoline- and diesel-range hydrocarbons, C5-C21) is possible in short periods (3 h). This work demonstrates a simple and efficient strategy for recycling waste polyolefin plastics using abundant solar energy.


Assuntos
Plásticos , Polienos , Plásticos/química , Solventes , Hidrocarbonetos
19.
Adv Mater ; 35(1): e2208799, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314386

RESUMO

The large-scale application of proton exchange membrane fuel cells is currently hampered by high cost of commercial Pt catalysts and their susceptibility to poisoning by CO impurities in H2 feed. In this context, the development of CO-tolerant electrocatalysts with high Pt atom utilization efficiency for hydrogen oxidation reaction (HOR) is of critical importance. Herein, Pt single atoms are successfully immobilized on chromium nitride nanoparticles by atomic layer deposition method, denoted as Pt SACs/CrN. Electrochemical tests establish Pt SACs/CrN to be a very efficient HOR catalyst, with a mass activity that is 5.7 times higher than commercial PtRu/C. Strikingly, the excellent performance of Pt SACs/CrN is maintained after introducing 1000 ppm of CO in H2 feed. The excellent CO-tolerance of Pt SACs/CrN is related to weaker CO adsorption on Pt single atoms. This work provides guidelines for the design and construction of active and CO-tolerant catalysts for HOR.

20.
Foods ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174446

RESUMO

Dictyophora indusiata is one of the most famous edible mushrooms in China. D. indusiata polysaccharide (DP) has attracted increasing attention because of its multiple beneficial effects. In this study, the in vitro simulated digestion and microbial fermentation were designed to reveal the potential catabolic property of DP and its impacts on the modulation of gut microbial composition. The results showed that the reducing sugar content, total polysaccharides content, molecular weight, and rheological property of DP were not significantly altered under in vitro simulated digestive conditions. However, the molecular weight, apparent viscosity, and total polysaccharides content of indigestible DP (DPI) significantly decreased during in vitro fecal fermentation, and the reducing sugar content and the release of free monosaccharides notably increased, suggesting that DP could be degraded and used by gut microbiota. Additionally, the relative abundances of several beneficial bacteria, such as Bacteroides, Catenibacterium, Parabacteroides, and Megamonas, increased significantly, indicating that DP can regulate the composition and abundance of gut microbiota. Moreover, DP could also promote the production of SCFAs, thus changing the acid-base environment of the large intestine. The results of this study are beneficial for deeply clarifying the catabolic behavior of DP in the gastrointestinal tract, which can provide a theoretical basis for developing microbiota-directed products based on DP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA