Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 176(1-2): 190-201, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664431

RESUMO

The distribution of calculated internal doses has been determined for 8043 Mayak Production Associate (Mayak PA) workers. This is a subset of the entire cohort of 25 757 workers, for whom monitoring data are available. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185 ± 594 mGy (geometric mean = 28 mGy; geometric standard deviation = 9.32; median value = 31 mGy; maximum value = 8980 mGy). The ranges of relative standard uncertainty were from 40 to 2200% for accumulated lung dose, from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-22% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to log normal. The accumulated internal plutonium dose to systemic organs was close to a log triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.7 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.

2.
Radiat Prot Dosimetry ; 176(1-2): 106-116, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655798

RESUMO

In the Mayak Worker Dosimetry System (MWDS-2013), intakes of plutonium and organ doses are assessed on the basis of measurements made on the plutonium content of 56 400 urine samples. Altogether, there were urine bioassays for 7591 (29%) of the 25 757 cohort members who were employed any time at Mayak between 1948 and 1982. These measurements are subject to uncertainty due to many factors (e.g. whether or not creatinine is measured, the volume of the sample, whether diethylenetriaminepentaacetic acid was administered, etc.) and this uncertainty will affect not only the uncertainty in the estimated doses, but also the values of the doses themselves. Therefore, it is important for the estimated uncertainty to be as accurate as possible. The input to the dose calculation requires an estimate of the plutonium activity in a true 24-hour sample. The uncertainty in this activity is approximated by a lognormal distribution. The aim of this paper is to describe and justify how the parameters of this lognormal distribution are derived from the raw data. Histograms of the distribution of sample volumes are given for both sexes. The method of calculation of the decision threshold and relative standard uncertainty (RSU) of a measurement result for Pu activity in a worker's urine sample is shown. Diagrams of correlation between Pu activity in collected urine and its RSU are given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA