Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 173: 156421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944420

RESUMO

BACKGROUND: The Shiga toxin-producing Escherichia coli (STEC) infects animals and induces acute intestinal inflammation. Long non-coding RNAs (lncRNAs) are known to play crucial roles in modulating inflammation response. However, it is not clear whether lncRNAs are involved in STEC-induced inflammation. METHODS AND RESULTS: To understand the association of lncRNAs with STEC infection, we used RNA-seq technology to analyze the profiles of lncRNAs in Mock-infected and STEC-infected human intestinal epithelial cells (HIECs). We detected a total of 702 lncRNAs differentially expressed by STEC infection. 583 differentially expressed lncRNAs acted as competitive microRNAs (miRNAs) binding elements in regulating the gene expression involved in TNF signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, and apoptosis pathways. We analyzed 3 targeted genes, TRADD, TRAF1 and TGFB2, which were differentially regulated by mRNA-miRNA-lncRNA interaction network, potentially involved in the inflammatory and apoptotic response to STEC infection. Functional analysis of up/downstream genes associated with differentially expressed lncRNAs revealed their role in adheres junction and endocytosis. We also used the qRT-PCR technique to validate 8 randomly selected differentially expressed lncRNAs and mRNAs in STEC-infected HIECs. CONCLUSION: Our results, for the first time, revealed differentially expressed lncRNAs induced by STEC infection of HIECs. The results will help investigate the molecular mechanisms for the inflammatory responses induced by STEC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Escherichia coli Shiga Toxigênica , Animais , Humanos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Fosfatidilinositol 3-Quinases/genética , MicroRNAs/genética , Inflamação , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica
2.
Protein Expr Purif ; 195-196: 106093, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35447306

RESUMO

Pigeon paramyxovirus type 1 (PPMV-1) belongs to the avian paramyxovirus type 1 group of viruses, which can cause tremors, torticollis, and respiratory signs in domestic and wild pigeons. The M protein of PPMV-1 is a multifunctional structural protein. It not only helps in the assembly, budding, and positioning of the virus but also inhibits the host's immune response and promotes replication of the virus in the host. In this study, the GST pull-down method was used to screen host proteins that interact with PPMV-1 M protein, and then mass spectrometry (MS) was used to analyse the screened host proteins. Enrichment analysis of the differentially expressed genes showed that the 77 screened proteins were highly associated with the gene ontology categories: protein synthesis, metabolism, and cell signalling pathway transduction. We selected NIMA-related kinase 7 (NEK7) as the candidate protein for co-localization analysis and co-immunoprecipitation verification. The results revealed that PPMV-1 M protein interacts with NEK7 of the host cell. This interactome study of PPMV-1 M protein will serve to clarify its function during viral replication and will provide a crucial theoretical basis for studying the pathogenic mechanism of PPMV-1.


Assuntos
Columbidae , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Filogenia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA