Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468335

RESUMO

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Assuntos
Aterosclerose , Flavonas , PPAR gama , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo
2.
Front Immunol ; 15: 1332440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375473

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus to cause acute respiratory distress syndrome (ARDS) and contains four structural proteins: spike, envelope, membrane, and nucleocapsid. An increasing number of studies have demonstrated that all four structural proteins of SARS-CoV-2 are capable of causing lung injury, even without the presence of intact virus. Therefore, the topic of SARS-CoV-2 structural protein-evoked lung injury warrants more attention. In the current article, we first synopsize the structural features of SARS-CoV-2 structural proteins. Second, we discuss the mechanisms for structural protein-induced inflammatory responses in vitro. Finally, we list the findings that indicate structural proteins themselves are toxic and sufficient to induce lung injury in vivo. Recognizing mechanisms of lung injury triggered by SARS-CoV-2 structural proteins may facilitate the development of targeted modalities in treating COVID-19.


Assuntos
COVID-19 , Lesão Pulmonar , Humanos , SARS-CoV-2/metabolismo , Nucleocapsídeo/metabolismo , Proteínas do Envelope Viral/metabolismo
3.
Phytomedicine ; 129: 155555, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579641

RESUMO

BACKGROUND: Ischemic stroke is a leading cause of death and long-term disability worldwide. Studies have suggested that cerebral ischemia induces massive mitochondrial damage. Valerianic acid A (VaA) is the main active ingredient of valerianic acid with neuroprotective activity. PURPOSE: This study aimed to investigate the neuroprotective effects of VaA with ischemic stroke and explore the underlying mechanisms. METHOD: In this study, we established the oxygen-glucose deprivation and reperfusion (OGD/R) cell model and the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model in vitro and in vivo. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of VaA in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP), and activities of NAD+ were detected to reflect mitochondrial function. Mechanistically, gene knockout experiments, transfection experiments, immunofluorescence, DARTS, and molecular dynamics simulation experiments showed that VaA bound to IDO1 regulated the kynurenine pathway of tryptophan metabolism and prevented Stat3 dephosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. RESULTS: We showed that VaA decreased the infarct volume in a dose-dependent manner and exerted neuroprotective effects against reperfusion injury. Furthermore, VaA promoted Opa1-related mitochondrial fusion and reversed neuronal mitochondrial damage and loss after reperfusion injury. In SH-SY5Y cells, VaA (5, 10, 20 µM) exerted similar protective effects against OGD/R-induced injury. We then examined the expression of significant enzymes regulating the kynurenine (Kyn) pathway of the ipsilateral brain tissue of the ischemic stroke rat model, and these enzymes may play essential roles in ischemic stroke. Furthermore, we found that VaA can bind to the initial rate-limiting enzyme IDO1 in the Kyn pathway and prevent Stat3 phosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. Using in vivo IDO1 knockdown and in vitro IDO1 overexpressing models, we demonstrated that the promoted mitochondrial fusion and neuroprotective effects of VaA were IDO1-dependent. CONCLUSION: VaA administration improved neurological function by promoting mitochondrial fusion through the IDO1-mediated Stat3-Opa1 pathway, indicating its potential as a therapeutic drug for ischemic stroke.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Fármacos Neuroprotetores , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Ratos , Modelos Animais de Doenças , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Cinurenina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Triterpenos/farmacologia
4.
Oncol Lett ; 28(3): 413, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988449

RESUMO

T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.

5.
Aging (Albany NY) ; 16(11): 9876-9898, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843385

RESUMO

Estrogen is thought to have a role in slowing down aging and protecting cardiovascular and cognitive function. However, high doses of estrogen are still positively associated with autoimmune diseases and tumors with systemic inflammation. First, we administered exogenous estrogen to female mice for three consecutive months and found that the aorta of mice on estrogen develops inflammatory manifestations similar to Takayasu arteritis (TAK). Then, in vitro estrogen intervention was performed on mouse aortic vascular smooth muscle cells (MOVAS cells). Stimulated by high concentrations of estradiol, MOVAS cells showed decreased expression of contractile phenotypic markers and increased expression of macrophage-like phenotypic markers. This shift was blocked by tamoxifen and Krüppel-like factor 4 (KLF4) inhibitors and enhanced by Von Hippel-Lindau (VHL)/hypoxia-inducible factor-1α (HIF-1α) interaction inhibitors. It suggests that estrogen-targeted regulation of the VHL/HIF-1α/KLF4 axis induces phenotypic transformation of vascular smooth muscle cells (VSMC). In addition, estrogen-regulated phenotypic conversion of VSMC to macrophages is a key mechanism of estrogen-induced vascular inflammation, which justifies the risk of clinical use of estrogen replacement therapy.


Assuntos
Estrogênios , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Macrófagos , Músculo Liso Vascular , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Feminino , Estrogênios/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Fenótipo , Aorta/patologia , Aorta/efeitos dos fármacos , Inflamação/metabolismo
6.
Front Endocrinol (Lausanne) ; 15: 1430720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076513

RESUMO

Background: Bile acids (BAs), products of gut microbiota metabolism, have long been implicated in atherosclerotic disease pathogenesis. Characterizing the serum bile acid profile and exploring its potential role in carotid atherosclerosis (CAS) development are crucial tasks. Methods: In this study, we recruited 73 patients with CAS as the disease group and 77 healthy individuals as the control group. We systematically measured the serum concentrations of 15 bile acids using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were applied to analyze the impact of bile acids on the disease and select the key BAs. The possible molecular mechanism was elucidated by network pharmacology. Results: (1) The BA profile of patients with CAS significantly differed. (2) Multifactorial logistic regression analysis identified elevated levels of GCDCA (OR: 1.01, P < 0.001), DCA (OR: 1.01, P = 0.005), and TDCA (OR: 1.05, P = 0.002) as independent risk factors for CAS development. Conversely, GCA (OR: 0.99, P = 0.020), LCA (OR: 0.83, P = 0.002), and GUDCA (OR: 0.99, P = 0.003) were associated with protective effects against the disease. GCA, DCA, LCA, and TDCA were identified as the four key BAs. (3) TNF, FXR, GPBAR1, ESR1 and ACE were predicted to be targets of BAs against AS. These four BAs potentially impact AS progression by triggering signaling pathways, including cAMP, PPAR, and PI3K-AKT pathways, via their targets. Conclusion: This study offers valuable insights into potential therapeutic strategies for atherosclerosis that target bile acids.


Assuntos
Ácidos e Sais Biliares , Doenças das Artérias Carótidas , Metabolômica , Farmacologia em Rede , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Masculino , Feminino , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/tratamento farmacológico , Doenças das Artérias Carótidas/sangue , Pessoa de Meia-Idade , Metabolômica/métodos , Idoso , Estudos de Casos e Controles , Biomarcadores/sangue , Receptores Acoplados a Proteínas G/metabolismo , Espectrometria de Massas em Tandem
7.
JCI Insight ; 9(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516885

RESUMO

CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag-/- hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.


Assuntos
Linfócitos T Reguladores , Tolerância ao Transplante , Animais , Camundongos , Fatores de Transcrição Forkhead , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica , Linfócitos T CD4-Positivos , Subunidade alfa de Receptor de Interleucina-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA