Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 90(5): 1054-1080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580920

RESUMO

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Assuntos
COVID-19 , Pandemias , Aminoácidos , Humanos , Estudos Prospectivos , Proteoma , SARS-CoV-2 , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Drug Metab Dispos ; 38(6): 1003-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20215413

RESUMO

Cytochromes P450 (P450s) interact with redox transfer proteins, including P450 reductase (CPR) and cytochrome b(5) (b5), all being membrane-bound. In multiple in vitro systems, P450-P450 interactions also have been observed, resulting in alterations in enzymatic activity. The current work investigated the effects and mechanisms of interaction between CYP2C9 and CYP3A4 in a reconstituted system. CYP2C9-mediated metabolism of S-naproxen and S-flurbiprofen was inhibited up to 80% by coincubation with CYP3A4, although K(m) values were unchanged. Increasing CYP3A4 concentrations increased the degree of inhibition, whereas increasing CPR concentrations resulted in less inhibition. Addition of b5 only marginally affected the magnitude of inhibition. In contrast, CYP2C9 did not alter the CYP3A4-mediated metabolism of testosterone. The potential role of the hydrophobic N terminus on these interactions was assessed by incubating truncated CYP2C9 with full-length CYP3A4, and vice versa. In both cases, the inhibition was fully abolished, indicating an important role for hydrophobic forces in CYP2C9-CYP3A4 interactions. Finally, a CYP2C9/CYP3A4 heteromer complex was isolated by coimmunoprecipitation techniques, confirming the physical interaction of the proteins. These results show that the N-terminal membrane binding domains of CYP2C9 and CYP3A4 are involved in heteromer complex formation and that at least one consequence is a reduction in CYP2C9 activity.


Assuntos
Sequência de Aminoácidos/fisiologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP3A/metabolismo , Animais , Proteínas Correpressoras , Citocromo P-450 CYP2C9 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Proteínas Repressoras
3.
bioRxiv ; 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33299989

RESUMO

Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.

4.
J Bone Miner Res ; 29(8): 1847-58, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24591096

RESUMO

Treatment with the cathepsin K (CatK) inhibitor odanacatib (ODN) protects against bone loss and maintains normal biomechanical properties in the spine and hip of ovariectomized (OVX) preclinical models. Here, we characterized the effects of ODN on the dynamics of cortical modeling and remodeling, and dimension and strength of the central femur in adult OVX-rhesus monkeys. Animals were treated with vehicle or ODN (6 or 30 mg/kg, once per day [q.d., p.o.]) in prevention mode for 21 months. Calcein and tetracycline double-labeling were given at 12 and 21 months, and the femoral cross-sections were subjected to dynamic histomorphometric and cement line analyses. ODN treatment significantly increased periosteal and endocortical bone formation (BFR/BS), accompanied with an increase in endocortical mineralizing surface (102%, p < 0.01) with the 6 mg/kg dose. ODN at both doses reduced remodeling hemiosteon numbers by 51% and 66% (p < 0.05), respectively, and ODN 30 mg/kg numerically reduced activation frequency without affecting wall thickness. On the same endocortical surface, ODN increased all modeling-based parameters, while reducing intracortical remodeling, consistent with the observed no treatment effects on cortical porosity. ODN 30 mg/kg markedly increased cortical thickness (CtTh, p < 0.001) and reduced marrow area (p < 0.01). Lastly, ODN treatment increased femoral structural strength (p < 0.001). Peak load was positively correlated with the increases in bone mineral content (BMC) (r(2) = 0.9057, p < 0.0001) and CtTh (r2 = 0.6866, p < 0.0001). Taken together, by reducing cortical remodeling-based and stimulating modeling-based bone formation, ODN significantly improved cortical dimension and strength in OVX monkeys. This novel mechanism of CatK inhibition in stimulating cortical formation suggests that ODN represents a novel therapeutic approach for the treatment of osteoporosis.


Assuntos
Compostos de Bifenilo/farmacologia , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Catepsina K/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Animais , Compostos de Bifenilo/administração & dosagem , Feminino , Quadril/patologia , Macaca mulatta , Ovariectomia , Coluna Vertebral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA