Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 258: 119416, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885827

RESUMO

To address the urgent need for efficient removal of lead-containing wastewater and reduce the risk of toxicity associated with heavy-metal wastewater contamination, materials with high removal rates and easy separation must be developed. Herein, a novel organic-inorganic hybrid material based on phosphorylated magnetic chitosan (MSCP) was synthesized and applied for the selective removal of lead (II) from wastewater. From the characterization and the experimental results can be obtained that the magnetic saturation strength of MSCP reaches 14.65 emu/g, which can be separated quickly and regenerated readily, and maintains high adsorption performance even after 5 cycles, indicating that the adsorbent possesses good magnetic separation performance and durability. Also, MSCP showed high selective adsorption performance for lead in the multiple metal ions coexistence solutions at pH 6.0 and room temperature, with an adsorption coefficient SPb-MSCP of 78.85%, which was much higher than that of MSC (the SPb-MSC was 11.59%). Additionally, in the single lead system, the sorption characteristics of Pb(II) on MSCP and MCP had obvious pH-responsiveness, and their adsorption capacity increased with the increase of solution pH, reaching the maximal values of 80.19 and 72.68 mg/g, respectively. It is noteworthy that the acid resistance of MSCP with an inert layer coated on the core is significantly improved, with almost no iron leaching from MSCP over the entire acidity range, while MCP has 7.63 mg/g of iron leaching at pH 1.0. Significantly, MSCP exhibited a maximum adsorption capacity of 102.04 mg/g, which matches the Langmuir model at pH 6.0 and 298.15 K, and points to the pseudo-second-order kinetics of the chemisorption process of Pb(II) on MSCP. These findings highlight the great potential of MSCP for Pb(II) removal from aqueous solution, making it a promising solution for Pb(II) contamination in wastewater.


Assuntos
Quitosana , Chumbo , Fosfatos , Águas Residuárias , Poluentes Químicos da Água , Chumbo/química , Chumbo/isolamento & purificação , Quitosana/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Fosfatos/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
2.
Environ Sci Pollut Res Int ; 31(34): 46877-46897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980480

RESUMO

The research on bio-based flocculants for waste resource utilization and environmental protection has garnered significant attention. Bio-based flocculants encompass plant-based, animal-based, and microbial variants that are prepared and modified through biological, chemical, and physical methods. These flocculants possess abundant functional groups, unique structures, and distinctive characteristics. This review comprehensively discussed the removal rates of conventional pollutants and emerging pollutants by bio-based flocculants, the interaction between these flocculants and pollutants, their impact on flocculation performance in wastewater treatment, as well as their application cost. Furthermore, it described the common challenges faced by bio-based flocculants in practical applications along with various improvement strategies to address them. With their safety profile, environmental friendliness, efficiency, renewability, and wide availability from diverse sources, bio-based flocculants hold great potential for widespread use in wastewater treatment.


Assuntos
Floculação , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
3.
J Hazard Mater ; 469: 133888, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412645

RESUMO

The sulfite (S(IV))-based advanced oxidation process (AOP) has emerged as an appealing alternative to the traditional persulfate-based AOP for the elimination of organic contaminants from diverse water matrices. In this work, a silica reinforced ZIF-67(Co) catalyst (CZS) is fabricated, characterized and tested in the activation of S(IV) for the sulfamethoxazole (SMX) degradation. The prepared CZS demonstrates superior stability and catalytic ability for the degradation of SMX compared to ZIF-67(Co) across a broad pH range. Unlike the conventional radical-dominated oxidation systems, the CZS/S(IV) system for SMX degradation operates through a non-radical mechanism, featuring high-valent Co(IV) and singlet oxygen (1O2) as the predominated reactive species. The hydroxylated Co species exposed on the CZS surface is identified as the pivotal active site, realizing the S(IV) activation through a complexation-electron transfer process, resulting in the production of various reactive intermediates. Co(II) undergoes the conversion to Co(IV) by generated HSO5-, and 1O2 predominantly originates from the intermediate SO4•-. Profiting from the highly selective oxidation capacities of Co(IV) and 1O2, the established oxidative system demonstrates a remarkable interference resistance and exhibits an exceptional decontamination performance under real-world water conditions. In short, this work provides a sustainable S(IV)-based oxidation strategy for environmental remediation via non-radical mechanism.

4.
J Hazard Mater ; 465: 133476, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232546

RESUMO

In this work, novel multifunctional cationic template copolymers with flocculation and sterilization capabilities were synthesized using a low-pressure ultraviolet (LP-UV) template polymerization method for the removal of kaolin and Escherichia coli (E. coli) from water. The influence of template agents on the structural performance of the copolymers was evaluated through characterization, which showed that template copolymer TPADM possesses a higher cationic charge density and a more complex rough surface, contributing to better flocculation performance than that of the non-template copolymer CPADM. Under optimal experimental conditions, TPADM-1 exhibited removal rates of 98.45% for kaolin and 99% for E. coli (OD600 =0.04), marginally outperforming the non-template copolymer. Simultaneously, TPADM-1 produced good adaptability to kaolin and E. coli wastewater in terms of wide pH, speculating that charge neutralization, adsorption bridging, patching, and sweeping simultaneously dominate the flocculation mechanism. Interestingly, SEM and 3D-EEM analysis confirm that the sterilization of E. coli occurs through two distinct functions: initially adsorption followed by subsequent cell membrane rupture and leakage of cellular contents, ultimately leading to cell death. This research further confirms the feasibility of the designed novel multifunctional copolymers for achieving simultaneous disinfection and turbidity removal, demonstrating practical applicability in real water treatment processes.


Assuntos
Compostos de Amônio Quaternário , Purificação da Água , Floculação , Caulim/química , Escherichia coli , Antibacterianos , Polímeros/química , Purificação da Água/métodos , Cátions , Desinfecção
5.
Water Res ; 254: 121351, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401287

RESUMO

The application of Fenton-like membrane reactors for water purification offers a promising solution to overcome technical challenges associated with catalyst recovery, reaction efficiency, and mass transfer typically encountered in heterogeneous batch reaction modes. This study presents a dual-modification strategy encompassing electron polarization and defect engineering to synthesize Al-doped and oxygen vacancies (OV)-enriched Co3O4 spinel catalysts (ACO-OV). This modification empowered ACO-OV with exceptional performance in activating peroxymonosulfate (PMS) for the removal of organic contaminants. Moreover, the ACO-OV@polyethersulfone (PES) membrane/PMS system achieved organic contaminant removal through filtration (with a reaction kinetic constant of 0.085 ms-1), demonstrating outstanding resistance to environmental interference and high operational stability. Mechanistic investigations revealed that the exceptional catalytic performance of this Fenton-like membrane reactor stemmed from the enrichment of reactants, exposure of reactive sites, and enhanced mass transfer within the confined space, leading to a higher availability of reactive species. Theoretical calculations were conducted to validate the beneficial intrinsic effects of electron polarization, defect engineering, and the confined space within the membrane reactor on PMS activation and organic contaminant removal. Notably, the ACO-OV@PES membrane/PMS system not only mineralized the targeted organic contaminants but also effectively mitigated their potential environmental risks. Overall, this work underscores the significant potential of the dual-modification strategy in designing spinel catalysts and Fenton-like membrane reactors for efficient organic contaminant removal.


Assuntos
Óxido de Alumínio , Cobalto , Elétrons , Óxidos , Polímeros , Sulfonas , Óxido de Magnésio , Peróxidos
6.
Environ Pollut ; 349: 123863, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565391

RESUMO

Microplastics (MPs) are emerging contaminants that are widely detected in drinking water and pose a potential risk to humans. Therefore, the MP removal from drinking water is a critical challenge. Recent studies have shown that MPs can be removed by coagulation. However, the coagulation removal of MPs from drinking water remains inadequately understood. Herein, the efficiency, mechanisms, and influencing factors of coagulation for removing MPs from drinking water are critically reviewed. First, the efficiency of MP removal by coagulation in drinking water treatment plants (DWTPs) and laboratories was comprehensively summarized, which indicated that coagulation plays an important role in MP removal from drinking water. The difference in removal effectiveness between the DWTPs and laboratory was mainly due to variations in treatment conditions and limitations of the detection techniques. Several dominant coagulation mechanisms for removing MPs and their research methods are thoroughly discussed. Charge neutralization is more relevant for small-sized MPs, whereas large-sized MPs are more dependent on adsorption bridging and sweeping. Furthermore, the factors influencing the efficiency of MP removal were jointly analyzed using meta-analysis and a random forest model. The meta-analysis was used to quantify the individual effects of each factor on coagulation removal efficiency by performing subgroup analysis. The random forest model quantified the relative importance of the influencing factors on removal efficiency, the results of which were ordered as follows: MPs shape > Coagulant type > Coagulant dosage > MPs concentration > MPs size > MPs type > pH. Finally, knowledge gaps and potential future directions are proposed. This review assists in the understanding of the coagulation removal of MPs, and provides novel insight into the challenges posed by MPs in drinking water.


Assuntos
Água Potável , Microplásticos , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA