Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002797

RESUMO

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Longevidade/genética , Sirtuínas/metabolismo , Sequência de Aminoácidos , Animais , Peso Corporal , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Evolução Molecular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Masculino , Mutagênese , Filogenia , Roedores/classificação , Alinhamento de Sequência , Sirtuínas/química , Sirtuínas/genética , Raios Ultravioleta
2.
PLoS Comput Biol ; 16(9): e1008269, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941419

RESUMO

We propose an efficient framework for genetic subtyping of SARS-CoV-2, the novel coronavirus that causes the COVID-19 pandemic. Efficient viral subtyping enables visualization and modeling of the geographic distribution and temporal dynamics of disease spread. Subtyping thereby advances the development of effective containment strategies and, potentially, therapeutic and vaccine strategies. However, identifying viral subtypes in real-time is challenging: SARS-CoV-2 is a novel virus, and the pandemic is rapidly expanding. Viral subtypes may be difficult to detect due to rapid evolution; founder effects are more significant than selection pressure; and the clustering threshold for subtyping is not standardized. We propose to identify mutational signatures of available SARS-CoV-2 sequences using a population-based approach: an entropy measure followed by frequency analysis. These signatures, Informative Subtype Markers (ISMs), define a compact set of nucleotide sites that characterize the most variable (and thus most informative) positions in the viral genomes sequenced from different individuals. Through ISM compression, we find that certain distant nucleotide variants covary, including non-coding and ORF1ab sites covarying with the D614G spike protein mutation which has become increasingly prevalent as the pandemic has spread. ISMs are also useful for downstream analyses, such as spatiotemporal visualization of viral dynamics. By analyzing sequence data available in the GISAID database, we validate the utility of ISM-based subtyping by comparing spatiotemporal analyses using ISMs to epidemiological studies of viral transmission in Asia, Europe, and the United States. In addition, we show the relationship of ISMs to phylogenetic reconstructions of SARS-CoV-2 evolution, and therefore, ISMs can play an important complementary role to phylogenetic tree-based analysis, such as is done in the Nextstrain project. The developed pipeline dynamically generates ISMs for newly added SARS-CoV-2 sequences and updates the visualization of pandemic spatiotemporal dynamics, and is available on Github at https://github.com/EESI/ISM (Jupyter notebook), https://github.com/EESI/ncov_ism (command line tool) and via an interactive website at https://covid19-ism.coe.drexel.edu/.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Infecções por Coronavirus , Genômica/métodos , Pandemias , Pneumonia Viral , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Evolução Molecular , Marcadores Genéticos/genética , Genoma Viral/genética , Humanos , Mutação/genética , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , RNA Viral/genética , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de RNA , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA