Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7890): 664-669, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937898

RESUMO

More than a decade of research on the electrocaloric (EC) effect has resulted in EC materials and EC multilayer chips that satisfy a minimum EC temperature change of 5 K required for caloric heat pumps1-3. However, these EC temperature changes are generated through the application of high electric fields4-8 (close to their dielectric breakdown strengths), which result in rapid degradation and fatigue of EC performance. Here we report a class of EC polymer that exhibits an EC entropy change of 37.5 J kg-1 K-1 and a temperature change of 7.5 K under 50 MV m-1, a 275% enhancement over the state-of-the-art EC polymers under the same field strength. We show that converting a small number of the chlorofluoroethylene groups in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer into covalent double bonds markedly increases the number of the polar entities and enhances the polar-nonpolar interfacial areas of the polymer. The polar phases in the polymer adopt a loosely correlated, high-entropy state with a low energy barrier for electric-field-induced switching. The polymer maintains performance for more than one million cycles at the low fields necessary for practical EC cooling applications, suggesting that this strategy may yield materials suitable for use in caloric heat pumps.

2.
Proc Natl Acad Sci U S A ; 121(24): e2311180121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830101

RESUMO

As a sustainable and promising approach of removing of nitrogen oxides (NOx), catalytic reduction of NOx with H2 is highly desirable with a precise understanding to the structure-activity relationship of supported catalysts. In particular, the dynamic evolution of support at microscopic scale may play a critical role in heterogeneous catalysis, however, identifying the in situ structural change of support under working condition with atomic precision and revealing its role in catalysis is still a grand challenge. Herein, we visually capture the surface lattice expansion of WO3-x support in Pt-WO3-x catalyst induced by NO in the exemplified reduction of NO with H2 using in situ transmission electron microscopy and first reveal its important role in enhancing catalysis. We find that NO can adsorb on the oxygen vacancy sites of WO3-x and favorably induce the reversible stretching of W-O-W bonds during the reaction, which can reduce the adsorption energy of NO on Pt4 centers and the energy barrier of the rate-determining step. The comprehensive studies reveal that lattice expansion of WO3-x support can tune the catalytic performance of Pt-WO3-x catalyst, leading to 20% catalytic activity enhancement for the exemplified reduction of NO with H2. This work reveals that the lattice expansion of defective support can tune and optimize the catalytic performance at the atomic scale.

3.
Proc Natl Acad Sci U S A ; 120(8): e2216584120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787366

RESUMO

Nitrogen oxide (NOx) pollution presents a severe threat to the environment and human health. Catalytic reduction of NOx with H2 using single-atom catalysts poses considerable potential in the remediation of air pollution; however, the unfavorable process of H2 dissociation limits its practical application. Herein, we report that the in situ formation of PtTi cocatalytic sites (which are stabilized by Pt-Ti bonds) over Pt1/TiO2 significantly increases NOx conversion by reducing the energy barrier of H2 activation. We demonstrate that two H atoms of H2 molecule are absorbed by adjacent Pt atoms in Pt-O and Pt-Ti, respectively, which can promote the cleave of H-H bonds. Besides, PtTi sites facilitate the adsorption of NO molecules and further lower the activation barrier of the whole de-NOx reaction. Extending the concept to Pt1/Nb2O5 and Pd1/TiO2 systems also sees enhanced catalytic activities, demonstrating that engineering the cocatalytic sites can be a general strategy for the design of high-efficiency catalysts that can benefit environmental sustainability.

4.
Proc Natl Acad Sci U S A ; 120(21): e2220315120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186847

RESUMO

The unsatisfactory catalytic activity of nanozymes owing to their inefficient electron transfer (ET) is the major challenge in biomimetic catalysis-related biomedical applications. Inspired by the photoelectron transfers in natural photoenzymes, we herein report a photonanozyme of single-atom Ru anchored on metal-organic frameworks (UiO-67-Ru) for achieving photoenhanced peroxidase (POD)-like activity. We demonstrate that the atomically dispersed Ru sites can realize high photoelectric conversion efficiency, superior POD-like activity (7.0-fold photoactivity enhancement relative to that of UiO-67), and good catalytic specificity. Both in situ experiments and theoretical calculations reveal that photoelectrons follow the cofactor-mediated ET process of enzymes to promote the production of active intermediates and the release of products, demonstrating more favorable thermodynamics and kinetics in H2O2 reduction. Taking advantage of the unique interaction of the Zr-O-P bond, we establish a UiO-67-Ru-based immunoassay platform for the photoenhanced detection of organophosphorus pesticides.


Assuntos
Peróxido de Hidrogênio , Praguicidas , Biomimética , Compostos Organofosforados , Oxirredução , Catálise
5.
Proc Natl Acad Sci U S A ; 119(45): e2214089119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322768

RESUMO

Oxygen reduction reaction (ORR), an essential reaction in metal-air batteries and fuel cells, still faces many challenges, such as exploiting cost-effective nonprecious metal electrocatalysts and identifying their surface catalytic sites. Here we introduce bulk defects, Frank partial dislocations (FPDs), into metallic cobalt to construct a highly active and stable catalyst and demonstrate an atomic-level insight into its surface terminal catalysis. Through thermally dealloying bimetallic carbide (Co3ZnC), FPDs were in situ generated in the final dealloyed metallic cobalt. Both theoretical calculations and atomic characterizations uncovered that FPD-driven surface terminations create a distinctive type of surface catalytic site that combines concave geometry and compressive strain, and this two-in-one site intensively weakens oxygen binding. When being evaluated for the ORR, the catalyst exhibits onset and half-wave potentials of 1.02 and 0.90 V (versus the reversible hydrogen electrode), respectively, and negligible activity decay after 30,000 cycles. Furthermore, zinc-air batteries and H2-O2/air fuel cells built with this catalyst also achieve remarkable performance, making it a promising alternative to state-of-the-art Pt-based catalysts. Our findings pave the way for the use of bulk defects to upgrade the catalytic properties of nonprecious electrocatalysts.

6.
Nano Lett ; 24(29): 9034-9041, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990087

RESUMO

FeNC catalysts are considered one of the most promising alternatives to platinum group metals for the oxygen reduction reaction (ORR). Despite the extensive research on improving ORR activity, the undesirable durability of FeNC is still a critical issue for its practical application. Herein, inspired by the antioxidant mechanism of natural enzymes, CeO2 nanozymes featuring catalase-like and superoxide dismutase-like activities were coupled with FeNC to mitigate the attack of reactive oxygen species (ROS) for improving durability. Benefiting from the multienzyme-like activities of CeO2, ROS generated from FeNC is instantaneously eliminated to alleviate the corrosion of carbon and demetallization of metal sites. Consequently, FeNC/CeO2 exhibits better ORR durability with a decay of only 5 mV compared to FeNC (18 mV) in neutral electrolyte after 10k cycles. The FeNC/CeO2-based zinc-air battery also shows minimal voltage decay over 140 h in galvanostatic discharge-charge cycling tests, outperforming FeNC and commercial Pt/C.

7.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843442

RESUMO

Increasing threats of air pollution prompt the design of air purification systems. As a promising initiative defense strategy, nanocatalysts are integrated to catalyze the detoxification of specific pollutants. However, it remains a grand challenge to tailor versatile nanocatalysts to cope with diverse pollutants in practice. Here, we report a nanozyme metabolism system to realize broad-spectrum protection from air pollution. Atomic K-modified carbon nitride featuring flavin oxidase-like and peroxidase-like activities was synthesized to initiate nanozyme metabolism. In situ experiments and theoretical investigations collectively show that K sites optimize the geometric and electronic structure of cyano sites for both enzyme-like activities. As a proof of concept, the nanozyme metabolism was applied to the mask against volatile organic compounds, persistent organic pollutants, reactive oxygen species, bacteria, and so on. Our finding provides a thought to tackle global air pollution and deepens the understanding of nanozyme metabolism.

8.
J Am Chem Soc ; 146(15): 10735-10744, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574239

RESUMO

The lack of highly efficient and inexpensive catalysts severely hinders the large-scale application of Zn-air batteries (ZABs). High-entropy oxides (HEOs) exhibit unique structures and attractive properties; thus, they are promising to be used in ZABs. However, conventional high-temperature synthesis methods tend to obtain microscale HEOs with a lower exposure rate of active sites. Here, we report a facile solvothermal strategy for preparing two-dimensional (2D) HEO sub-1 nm nanosheets (SNSs) induced by polyoxometalate (POM) clusters. Taking advantage of the special 2D sub-1 nm structure and precise element regulation, these 2D HEOs-POM SNSs exhibit enhanced bifunctional oxygen evolution and oxygen reduction reaction activity under light irradiation. Further applying these 2D HEOs-POM SNSs to ZABs as cathode catalysts, the CoFeNiMnCuZnOx-phosphomolybdic acid SNSs-based ZABs deliver a low charge/discharge voltage gap of 0.25 V at 2 mA cm-2 under light irradiation. Meanwhile, it could maintain an ultralong-term stability for 1600 h at 2 mA cm-2 and 930 h at 10 mA cm-2. The 2D sub-1 nm structure and fine element control in HEOs provide opportunities to solve the problems of low intrinsic activity, limited active sites, and instability of air cathodes in ZABs.

9.
J Am Chem Soc ; 146(21): 14875-14888, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38750611

RESUMO

Most of the nanozymes have been obtained based on trial and error, for which the application is usually compromised by enzymatic activity regulation due to a vague catalytic mechanism. Herein, a hollow axial Mo-Pt single-atom nanozyme (H-MoN5@PtN4/C) is constructed by a two-tier template capture strategy. The axial ligand can induce Mo 4d orbital splitting, leading to a rearrangement of spin electrons (↑ ↑ → ↑↓) to regulate enzymatic activity. This creates catalase-like activity and enhances oxidase-like activity to catalyze cascade enzymatic reactions (H2O2 → O2 → O2•-), which can overcome tumor hypoxia and accumulate cytotoxic superoxide radicals (O2•-). Significantly, H-MoN5@PtN4/C displays destructive d-π conjugation between the metal and substrate to attenuate the restriction of orbitals and electrons. This markedly improves enzymatic performance (catalase-like and oxidase-like activity) of a Mo single atom and peroxidase-like properties of a Pt single atom. Furthermore, the H-MoN5@PtN4/C can deplete overexpressed glutathione (GSH) through a redox reaction, which can avoid consumption of ROS (O2•- and •OH). As a result, H-MoN5@PtN4/C can overcome limitations of a complex tumor microenvironment (TME) for tumor-specific therapy based on TME-activated catalytic activity.


Assuntos
Elétrons , Ligantes , Humanos , Platina/química , Catalase/química , Catalase/metabolismo , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Glutationa/química , Glutationa/metabolismo , Nanoestruturas/química
10.
J Am Chem Soc ; 146(9): 6345-6351, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377535

RESUMO

Selenium (Se) discovered in 1817 belongs to the family of chalcogens. Surprisingly, despite the long history of over two centuries and the chemical simplicity of Se, the structure of amorphous Se (a-Se) remains controversial to date regarding the dominance of chains versus rings. Here, we find that vapor-deposited a-Se is composed of disordered rings rather than chains in melt-quenched a-Se. We further reveal that the main origin of this controversy is the facile transition of rings to chains arising from the inherent instability of rings. This transition can be inadvertently triggered by certain characterization techniques themselves containing above-bandgap illumination (above 2.1 eV) or heating (above 50 °C). We finally build a roadmap for obtaining accurate Raman spectra by using above-bandgap excitation lasers with low photon flux (below 1017 phs m-2 s-1) and below-bandgap excitation lasers measured at low temperatures (below -40 °C) to minimize the photoexcitation- and heat-induced ring-to-chain transitions.

11.
J Am Chem Soc ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133788

RESUMO

To date, NH3 synthesis under mild conditions is largely confined to precious Ru catalysts, while nonprecious metal (NPM) catalysts are confronted with the challenge of low catalytic activity due to the inverse relationship between the N2 dissociation barrier and NHx (x = 1-3) desorption energy. Herein, we demonstrate NPM (Co, Ni, and Re)-mediated Mo2CTx MXene (where Tx denotes the OH group) to achieve efficient NH3 synthesis under mild conditions. In particular, the NH3 synthesis rate over Re/Mo2CTx and Ni/Mo2CTx can reach 22.4 and 21.5 mmol g-1 h-1 at 400 °C and 1 MPa, respectively, higher than that of NPM-based catalysts and Cs-Ru/MgO ever reported. Experimental and theoretical studies reveal that Mo4+ over Mo2CTx has a strong ability for N2 activation; thus, the rate-determining step is shifted from conventional N2 dissociation to NH2* formation. NPM is mainly responsible for H2 activation, and the high reactivity of spillover hydrogen and electron transfer from NPM to the N-rich Mo2CTx surface can efficiently facilitate nitrogen hydrogenation and the subsequent desorption of NH3. With the synergistic effect of the dual active sites bridged by H-spillover, the NPM-mediated Mo2CTx catalysts circumvent the major obstacle, making NH3 synthesis under mild conditions efficient.

12.
J Am Chem Soc ; 146(31): 21453-21465, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052434

RESUMO

As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO2-x (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO2-x) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm-2 in 1 M KOH. The excellent mass activity of 12.3 mA µg-1Pt+Ru and specific activity of 32.0 mA cm-2ECSA at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO2-x can simultaneously promote H2O adsorption and activation, while the modification with Ru further optimizes H adsorption and H2O dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.

13.
J Am Chem Soc ; 146(32): 22220-22235, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088252

RESUMO

High-voltage layered oxide cathodes attract great attention for sodium-ion batteries (SIBs) due to the potential high energy density, but high voltage usually leads to rapid capacity decay. Herein, a stable high-voltage NaLi0.1Ni0.35Mn0.3Ti0.25O2 cathode with a ribbon-ordered superlattice is reported, and the intrinsic coupling mechanism between structure evolution and the anion redox reaction (ARR) is revealed. Li introduction constructs a special Li-O-Na configuration activating reversible nonbonded O 2p (|O2p)-type ARR and regulates the structure evolution way, enabling the reversible Li ions out-of-layer migration instead of the irreversible transition metal ions out-of-layer migration. The reversible structure evolution enhances the reversibility of the bonded O 2p (O2p)-type ARR and inhibits the generation of oxygen dimers, thus suppressing the irreversible molecular oxygen (O2)-type ARR. After the structure regulation, the structure evolution becomes reversible, |O2p-type ARR is activated, O2p-type ARR becomes stable, and O2-type ARR is inhibited, which largely suppresses the capacity degradation and voltage decay. The discharge capacity is increased from 154 to 168 mA h g-1, the capacity retention after 200 cycles significantly increases from 35 to 84%, and the voltage retention increases from 78 to 93%. This study presents some guidance for the design of high-voltage, O3-type oxide cathodes for high-performance SIBs.

14.
J Am Chem Soc ; 146(8): 5622-5633, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373280

RESUMO

Ethylene glycol is an essential commodity chemical with high demand, which is conventionally produced via thermocatalytic oxidation of ethylene with huge fossil fuel consumption and CO2 emission. The one-step electrochemical approach offers a sustainable route but suffers from reliance on noble metal catalysts, low activity, and mediocre selectivity. Herein, we report a one-step electrochemical oxidation of ethylene to ethylene glycol over an earth-abundant metal-based molecular catalyst, a cobalt phthalocyanine supported on a carbon nanotube (CoPc/CNT). The catalyst delivers ethylene glycol with 100% selectivity and 1.78 min-1 turnover frequency at room temperature and ambient pressure, more competitive than those obtained over palladium catalysts. Experimental data demonstrate that the catalyst orchestrates multiple tasks in sequence, involving electrochemical water activation to generate high-valence Co-oxo species, ethylene epoxidation to afford an ethylene oxide intermediate via oxygen transfer, and eventually ring-opening of ethylene oxide to ethylene glycol facilitated by in situ formed Lewis acid site. This work offers a great opportunity for commodity chemicals synthesis based on a one-step, earth-abundant metal-catalyzed, and renewable electricity-driven route.

15.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592685

RESUMO

The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in p-chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.

16.
J Am Chem Soc ; 146(1): 1071-1080, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157430

RESUMO

Strong metal-support interaction (SMSI) has been extensively studied in heterogeneous catalysis because of its significance in stabilizing active metals and tuning catalytic performance, but the origin of SMSI is not fully revealed. Herein, by using Pt/CeO2 as a model catalyst, we report an embedding structure at the interface between Pt and (110) plane of CeO2, where Pt clusters (∼1.6 nm) are embedded into the lattice of ceria within 3-4 atomic layers. In contrast, this phenomenon is absent in the CeO2(100) support. This unique geometric structure, as an effective motivator, triggers more significant electron transfer from Pt clusters to CeO2(110) support accompanied by the formation of interfacial structure (Ptδ+-Ov-Ce3+), which plays a crucial role in stabilizing Pt nanoclusters. A comprehensive investigation based on experimental studies and theoretical calculations substantiates that the interfacial sites serve as the intrinsic active center toward water-gas shift reaction (WGSR), featuring a moderate strength CO activation adsorption and largely decreased energy barrier of H2O dissociation, accounting for the prominent catalytic activity of Pt/CeO2(110) (a reaction rate of 15.76 molCO gPt-1 h-1 and a turnover frequency value of 2.19 s-1 at 250 °C). In addition, the Pt/CeO2(110) catalyst shows a prominent durability within a 120 h time-on-stream test, far outperforming the Pt/CeO2(100) one, which demonstrates the advantages of this embedding structure for improving catalyst stability.

17.
J Am Chem Soc ; 146(30): 20668-20677, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031766

RESUMO

Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.

18.
Anal Chem ; 96(23): 9704-9712, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38819721

RESUMO

Due to the commonly low content of biomarkers in diseases, increasing the sensitivity of electrochemiluminescence (ECL) systems is of great significance for in vitro ECL diagnosis and biodetection. Although dissolved O2 (DO) has recently been considered superior to H2O2 as a coreactant in the most widely used luminol ECL systems owing to its improved stability and less biotoxicity, it still has unsatisfactory ECL performance because of its ultralow reactivity. In this study, an effective plasmonic luminol-DO ECL system has been developed by complexing luminol-capped Ag nanoparticles (AgNPs) with plasma-treated Fe single-atom catalysts (Fe-SACs) embedded in graphitic carbon nitride (g-CN) (pFe-g-CN). Under optimal conditions, the performance of the resulting ECL system could be markedly increased up to 1300-fold compared to the traditional luminol-DO system. Further investigations revealed that duple binding sites of pFe-g-CN and plasmonically induced hot holes that disseminated from AgNPs to g-CN surfaces lead to facilitate significantly the luminous reaction process of the system. The proposed luminol-DO ECL system was further employed for the stable and ultrasensitive detection of prostate-specific antigen in a wide linear range of 1.0 fg/mL to 1 µg/mL, with a pretty low limit of detection of 0.183 fg/mL.


Assuntos
Técnicas Eletroquímicas , Ferro , Medições Luminescentes , Luminol , Nanopartículas Metálicas , Oxigênio , Prata , Luminol/química , Catálise , Oxigênio/química , Nanopartículas Metálicas/química , Ferro/química , Prata/química , Humanos , Antígeno Prostático Específico/metabolismo , Antígeno Prostático Específico/química , Grafite/química , Limite de Detecção , Domínio Catalítico , Compostos de Nitrogênio/química
19.
Small ; : e2401839, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804822

RESUMO

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

20.
Small ; 20(27): e2310250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295142

RESUMO

The commercialization of rechargeable Zn-air batteries (ZABs) relies on the material innovation to accelerate the sluggish oxygen electrocatalysis kinetics. Due to the differentiated mechanisms of reverse processes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), rationally integrating dual sites for bifunctional oxygen electrocatalysis is prerequisite yet remains challenging. Herein, multicomponent synergistic active sites within highly graphitic carbon substrate are exquisitely constructed, which is accomplished by fluorine (F) modulation strategy. The incorporation of F dopants facilitates pyridinic N formation for anchoring single metal sites, thus guaranteeing the coexistence of sufficient M-Nx sites and metal nanoparticles toward bifunctional oxygen electrocatalysis. As a result, the optimal catalyst, denoted as F NH2-FeNi-800, outperforms commercial Pt/C+RuO2 with smaller gap between Ej = 10 and E1/2 (ΔE) of 0.63 V (vs 0.7 V for Pt/C+RuO2), demonstrating its superior bifunctionality. Beyond that, its superiority is validated in homemade rechargeable ZABs. ZABs assembled using F NH2-FeNi-800 as the air cathode delivers higher peak power density (123.8 mW cm-2) and long-cycle lifetime (over 660 cycles) in comparison with Pt/C@RuO2 (68.8 mW cm-2; 300 cycles). The finding not only affords a highly promising oxygen electrocatalyst, but also opens an avenue to constructing multifunctional active sites for heterogeneous catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA