Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Nature ; 586(7829): 390-394, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057223

RESUMO

Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity1-3, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating1,2, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors4-12, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent13. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.

2.
Chem Rev ; 123(9): 5948-6002, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574336

RESUMO

The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.

3.
J Am Chem Soc ; 146(17): 11782-11791, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639158

RESUMO

Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.

4.
Angew Chem Int Ed Engl ; : e202408731, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923097

RESUMO

A full selectivity control over the catalytic hydrogenation of nitroaromatics leads to the production of six possible products, i.e., nitroso, hydroxylamine, azoxy, azo, hydrazo or aniline compounds, which has however not been achieved in the field of heterogeneous catalysis. Currently, there is no sufficient evidence to support that the catalytic hydrogenation of nitroaromatics with the use of heterogeneous metal catalysts would follow the Haber's mechanistic scheme based on electrochemical reduction. We now demonstrate in this work that it is possible to fully control the catalytic hydrogenation of nitroaromatics into their all six products using a single catalytic system under various conditions. Employing SnO2-supported Pt nanoparticles facilitated by the surface coordination of ethylenediamine and vanadium species enabled this unprecedented selectivity control. Through systematic investigation into the controlled production of all products and their chemical reactivities, we have constructed a detailed reaction network for the catalytic hydrogenation of nitroaromatics. Crucially, using oxygen-isolated characterization techniques is essential for identifying unstable compounds such as nitroso, hydroxylamine, hydrazo compounds. The insights gained from this research offer invaluable guidance for selectively transforming nitroaromatics into a wide array of functional N-containing compounds, both advancing fundamental understanding and fostering practical applications in various fields.

5.
J Am Chem Soc ; 145(18): 10178-10186, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116205

RESUMO

Tuning the metal-ligand interfaces of heterogeneous catalysts has emerged as an effective strategy to optimize their catalytic performance. However, improving the selectivity via organic modification remains a challenge so far. In this work, we demonstrate a simple ligand modification by preparing cysteamine-coated ultrathin palladium nanosheets. The as-prepared catalyst exhibits excellent selectivity with durability during catalytic hydrogenation of terminal alkynes, superior to most previously reported ligand-protected palladium catalysts. Further study reveals that a zwitterionic transformation occurs on the palladium interface under the H2 conditions, generating a rigid hydrogen bond network. Such an unexpected effect beyond the traditional steric effect derived from van der Waals interactions makes the catalytic surface favor the hydrogenation of alkynes over alkenes without significantly sacrificing the catalytic activity. These results not only provide a unique steric effect concept for surface coordination chemistry but also provide a practical application to improve the selectivity and activity comprehensively.

6.
J Am Chem Soc ; 145(28): 15528-15537, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37429887

RESUMO

Demetalation, caused by the electrochemical dissolution of metal atoms, poses a significant challenge to the practical application of single-atom catalytic sites (SACSs) in proton exchange membrane-based energy technologies. One promising approach to inhibit SACS demetalation is the use of metallic particles to interact with SACSs. However, the mechanism underlying this stabilization remains unclear. In this study, we propose and validate a unified mechanism by which metal particles can inhibit the demetalation of Fe SACSs. Metal particles act as electron donors, decreasing the Fe oxidation state by increasing the electron density at the FeN4 position, thereby strengthening the Fe-N bond, and inhibiting electrochemical Fe dissolution. Different types, forms, and contents of metal particles increase the Fe-N bond strength to varying extents. A linear correlation between the Fe oxidation state, Fe-N bond strength, and electrochemical Fe dissolution amount supports this mechanism. Our screening of a particle-assisted Fe SACS led to a 78% reduction in Fe dissolution, enabling continuous operation for up to 430 h in a fuel cell. These findings contribute to the development of stable SACSs for energy applications.

7.
J Am Chem Soc ; 145(36): 20081-20087, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639328

RESUMO

Developing cost-effective metal electrodes is essential for reducing the overall cost of perovskite solar cells (PSCs). Although copper is highly conductive and economical, it is rarely used as a positive electrode in efficient n-i-p PSCs due to its unmatched Fermi level and low oxidation threshold. We report herein that modification for the inner surface of electrodes using mercaptopyridine-based molecules readily tunes the electronic and chemical properties of copper, which has been achieved by fine-tuning the substituents of mercaptopyridines. The systematic adjustment for the Fermi level and oxidation potential of copper facilitates interfacial hole extraction and enhances the oxidation resistance of copper electrodes, which enables pure copper electrodes to be used in high-performance n-i-p PSCs with different hole transport materials. The resulting PSCs with copper electrodes display excellent power conversion efficiency and long-term stability, even comparable to those of the gold electrodes, showing great potential in the manufacturing and commercialization of PSCs.

8.
Angew Chem Int Ed Engl ; 62(12): e202217483, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36581588

RESUMO

Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.

9.
Angew Chem Int Ed Engl ; 62(9): e202217191, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36573904

RESUMO

Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.

10.
J Am Chem Soc ; 144(34): 15680-15688, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35984293

RESUMO

Quantum-tunneling-based nanoelectronics has the potential for the miniaturization of electronics toward the sub-5 nm scale. However, the nature of phase-coherent quantum tunneling leads to the rapid decays of the electrical conductance with tunneling transport distance, especially in organic molecule-based nanodevices. In this work, we investigated the conductance of the single-cluster junctions of a series of atomically well-defined silver nanoclusters, with varying sizes from 0.9 to 3.0 nm, using the mechanically controllable break junction (MCBJ) technique combined with quantum transport theory. Our charge transport investigations of these single-cluster junctions revealed that the conductance grows with increasing cluster size. The conductance decay constant was determined to be ∼-0.4 nm-1, which is of opposite sign to that of organic molecules. Comparison between experiment and theory reveals that although charge transport through the silver single-cluster junctions occurs via phase-coherent tunneling, this is compensated by a rapid decrease in the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap) with size and the increase in the electrode-cluster coupling, which results in their conductance increase up to lengths of ∼3.0 nm. These results demonstrate that such families of nanoclusters provide unique bottom-up building blocks for the fabrication of nanodevices in the sub-5 nm size range.

11.
J Am Chem Soc ; 144(13): 5930-5936, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316601

RESUMO

Boron nitride (BN) has been widely studied as an efficient catalyst for oxidative propane dehydrogenation (OPDH). Oxygen-containing boron species (e.g., BO·, B(OH)xO3-x) are generally considered as the active centers in BN for OPDH. Here, we show an effective progressive substitution strategy toward the development of boron-oxygen-nitrogen nanotubes (BONNTs) enriched with O-O species as a highly active, selective, and stable catalyst for OPDH. At 525 °C, an olefin yield of 48.6% is achieved over BONNTs with a propane conversion of 64.4%, 2.8 times that of boron nitrogen nanotubes (BNNTs). Even after reaction for 150 h (475 °C), BONNTs exhibit good olefin yield. Both the B(OH)xO3-x and O-O species that coexist in the BONNT catalyst are demonstrated as active centers, which differs from the B(OH)xO3-x one in BNNTs. Based on catalytic results, propane and oxygen alternate treatment experiments, and theoretical calculations, the O-O center is more favorable for producing both propylene (C3=) and ethylene (C2=), which experiences a dehydration pathway and two possible reaction paths with a lower energy barrier to yield olefins, while B(OH)xO3-x is mainly responsible for producing few C3=.

12.
J Am Chem Soc ; 144(24): 10844-10853, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671335

RESUMO

The complexity of heterogeneous metal catalysts makes it challenging to gain insights into their catalytic mechanisms. Thus, there exists a huge gap between heterogeneous catalysis and organometallic catalysis. With the success in the preparation of highly robust atomically precise metal nanocluster catalysts (i.e., [Au16(NHC-1)5(PA)3Br2]3+ and [Au17(NHC-1)4(PA)4Br4]+, where NHC-1 is a bidentate NHC ligand, and PA is phenylacetylide) with surface organometallic motifs anchored on the metallic core, we demonstrate in this work how the metallic core works synergistically with the surface organometallic motifs to enhance the catalysis. More importantly, the discovery allows the development of highly stable and recyclable heterogeneous metal catalysts to achieve efficient hydroamination of alkynes with an extremely low catalyst dosage (0.002 mol %), helping bridge the gap between heterogeneous and homogeneous metal catalysis. The surface modification of metal nanocatalysts with organometallic motifs provides a new design principle of metal catalysts with enhanced catalysis.

13.
Small ; 18(43): e2106983, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35187834

RESUMO

Room-temperature sodium-sulfur (RT-Na-S) batteries are attracting increased attention due to their high theoretical energy density and low-cost. However, the traditional RT-Na-S batteries assembled with glass fiber (GF) separators are still hindered by the polysulfide shuttle effect and sodium dendrite growth, limiting the battery's capacity and cycling stability. Here, a facile and effective method toward commercial polyolefin separators for constructing stable RT-Na-S batteries is presented. By coating commercial polypropylene membrane with core-shell structured MXene@C nanosheets, a powerful dual-functional separator with improved electrolyte wettability that can inhibit polysulfide migration and induce uniform sodium disposition is developed. More importantly, the modified separator can also accelerate the conversion kinetics of sodium polysulfides. Benefiting from these characteristics, the as-prepared RT-Na-S battery exhibits a remarkably enhanced capacity (1159 mAh g-1 at 0.2 C) and excellent cycling performance (95.8% of capacity retention after 650 cycles at 0.5 C). This study opens a promising avenue for the development of high-performance Na-S batteries.

14.
Chem Rev ; 120(21): 11810-11899, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786345

RESUMO

Atomically dispersed metal catalysts (ADCs), as an emerging class of heterogeneous catalysts, have been widely investigated during the past two decades. The atomic dispersion nature of the catalytic metal centers makes them an ideal system for bridging homogeneous and heterogeneous metal catalysts. The recent rapid development of new synthetic strategies has led to the explosive growth of ADCs with a wide spectrum of metal atoms dispersed on supports of different chemical compositions and natures. The availability of diverse ADCs creates a powerful materials platform for investigating mechanisms of complicated heterogeneous catalysis at the atomic levels. Considering most dispersed metal atoms on ADCs are coordinated by the donors from supports, this review will demonstrate how the surface coordination chemistry plays an important role in determining the catalytic performance of ADCs. This review will start from the link between coordination chemistry and heterogeneous catalysis. After the brief description on the advantages and limitations of common structure characterization methods in determining the coordination structure of ADCs, the surface coordination chemistry of ADCs on different types of supports will be discussed. We will mainly illustrate how the local and vicinal coordination species on different support systems act together with the dispersed catalytic metal center to determine the catalytic activity, selectivity, and stability of ADCs. The dynamic coordination structure change of ADCs in catalysis will be highlighted. At the end of the review, personal perspectives on the further development of the field of ADCs will be provided.

15.
J Am Chem Soc ; 143(38): 15882-15890, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533929

RESUMO

Stereoselective production of alkenes from the alkyne hydrogenation plays a crucial role in the chemical industry. However, for heterogeneous metal catalysts, the olefins in cis-configuration are usually dominant in the products due to the most important and common Horiuti-Polanyi mechanism involved over the metal surface. In this work, through combined theoretical and experimental investigations, we demonstrate a novel isomerization mechanism mediated by the frustrated hydrogen atoms via the H2 dissociation at the defect on solid surface, which can lead to the switch in selectivity from the cis-configuration to trans-configuration without overhydrogenation. The defective Rh2S3 with exposing facet of (110) exhibits outstanding performance as a heterogeneous metal catalyst for stereoselective production of trans-olefins. With the frustrated hydrogen atoms at spatially separated high-valence Rh sites, the isolated hydrogen mediated cis-to-trans isomerization of olefins can be effectively conducted and the overhydrogenation can be completely inhibited. Furthermore, the bifunctional Rh-S/Pd nanosheets have been synthesized through the surface modification of Pd nanosheets with rhodium and sulfide. With the selective semihydrogenation of alkynes into cis-olefins catalyzed by the small surface PdSx ensembles, the bifunctional Rh-S/Pd nanosheets exhibit excellent activity and stereoselectivity in the one-pot alkyne hydrogenation into trans-olefin, which surpasses the most reported homogeneous and heterogeneous catalysts.

16.
J Am Chem Soc ; 143(27): 10214-10220, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181853

RESUMO

Many metal clusters are intrinsically chiral but are often synthesized as a racemic mixture. By taking chiral Ag14(SPh(CF3)2)12(PPh3)4(DMF)4 (Ag14) clusters with bulky thiolate ligands as an example, we demonstrate herein an interesting assembly disassembly (ASDS) strategy to obtain the corresponding, optically pure crystals of both homochiral enantiomers, R-Ag14m and S-Ag14m. The ASDS strategy makes use of two bidentate linkers with different chiral configurations, namely, (1R,2R,N1E,N2E)-N1,N2-bis(pyridin-3-ylmethylene)cyclohexane-1,2-diamine (LR) and the corresponding chiral analogue LS. For comparison, we also use the racemic mixture of equimolar of LR and LS (LRS). Three three-dimensional (3D) Ag14-based metal-organic frameworks (MOFs) were characterized by X-ray crystallography to be [Ag14(SPh(CF3)2)12(PPh3)4(LR)2]n (Ag14-LR), [Ag14(SPh(CF3)2)12(PPh3)4(LS)2]n (Ag14-LS), and [Ag14(SPh(CF3)2)12(PPh3)4(LRS)2]n (Ag14-LRS), respectively. As expected, the building blocks in Ag14-LR or Ag14-LS are homochiral R-Ag14 or S-Ag14, respectively. In contrast, Ag14-LRS is achiral and crystallizes with a diamond-like structure containing alternate R-Ag14 and S-Ag14 clusters. During the assembly process, the racemic Ag14 clusters were converted to homochiral building blocks, namely, R-Ag14 for Ag14-LR and S-Ag14 for Ag14-LS. Subsequently, the chiral linkers were removed from the crystals of Ag14-LR and Ag14-LS via hydrolysis with water, and from the disassembled solid material Ag14-DR and Ag14-DS, optically pure enantiomers R-Ag14m and S-Ag14m were obtained. It is hoped that this simple assembly strategy can be used to construct cluster-based chiral assemblage materials and that the subsequent disassembly protocol can be used to obtain optically pure chiral cluster molecules from as-prepared racemic mixtures.

17.
J Am Chem Soc ; 143(12): 4483-4499, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33724821

RESUMO

Heterogeneous metal catalysts are distinguished by their structure inhomogeneity and complexity. The chameleonic nature of heterogeneous metal catalysts have prevented us from deeply understanding their catalytic mechanisms at the molecular level and thus developing industrial catalysts with perfect catalytic selectivity toward desired products. This Perspective aims to summarize recent research advances in deciphering complicated interfacial effects in heterogeneous hydrogenation metal nanocatalysts toward the design of practical heterogeneous catalysts with clear catalytic mechanism and thus nearly perfect selectivity. The molecular insights on how the three key components (i.e., catalytic metal, support, and ligand modifier) of a heterogeneous metal nanocatalyst induce effective interfaces determining the hydrogenation activity and selectivity are provided. The interfaces influence not only the H2 activation pathway but also the interaction of substrates to be hydrogenated with catalytic metal surface and thus the hydrogen transfer process. As for alloy nanocatalysts, together with the electronic and geometric ensemble effects, spillover hydrogenation occurring on catalytically "inert" metal by utilizing hydrogen atom spillover from active metal is highlighted. The metal-support interface effects are then discussed with emphasis on the molecular involvement of ligands located at the metal-support interface as well as cationic species from the support in hydrogenation. The mechanisms of how organic modifiers, with the ability to induce both 3D steric and electronic effects, on metal nanocatalysts manipulate the hydrogenation pathways are demonstrated. A brief summary is finally provided together with a perspective on the development of enzyme-like heterogeneous hydrogenation metal catalysts.

18.
J Am Chem Soc ; 143(15): 5855-5866, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835780

RESUMO

Perovskite solar cells (PSCs) with organic hole transporting layers (o-HTLs) have been widely studied due to their convenient solution processing, but it remains a big challenge to improve the hole mobilities of commercially available organic hole transporting materials without ion doping while maintaining the stability of PSCs. In this work, we demonstrated that the introduction of perovskite quantum dots (QDs) as interlayers between perovskite layers and dopant-free o-HTLs (P3HT, PTAA, Spiro-OMeTAD) resulted in a significantly enhanced performance of PSCs. The universal role of QDs in improving the efficiency and stability of PSCs was validated, exceeding that of lithium doping. After a deep examination of the mechanism, QD interlayers provided the multifunctional roles as follows: (1) passivating the perovskite surface to reduce the overall amount of trap states; (2) promoting hole extraction from perovskite to dopant-free o-HTLs by forming cascade energy levels; (3) improving hole mobilities of dopant-free o-HTLs by regulating their polymer/molecule orientation. What is more, the thermal/moisture/light stabilities of dopant-free o-HTLs-based PSCs were greatly improved with QD interlayers. Finally, we demonstrated the reliability of the QD interlayers by fabricating large-area solar modules with dopant-free o-HTLs, showing great potential in commercial usage.

19.
J Am Chem Soc ; 143(31): 12100-12107, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314590

RESUMO

Heteroatom-doped metal nanoclusters (NCs) are highly desirable to gain fundamental insights into the effect of doping on the electronic structure and catalytic properties. Unfortunately, their controlled synthesis is highly challenging when the metal atomic sizes are largely different (e.g., Cu and Pt). Here, we design a metal-exchange strategy that enables simultaneous doping and resizing of NCs. Specifically, [Pt2Cu34(PET)22Cl4]2- NC, the first example of a Pt-doped Cu NC, is synthesized by utilizing the unique reactivity of [Cu32(PET)24Cl2H8]2- NC with Pt4+ ions. The single-crystal X-ray structure reveals that two directly bonded Pt atoms occupy the two centers of an unusually interpenetrating, incomplete biicosahedron core (Pt2Cu18), which is stabilized by a Cu16(PET)22Cl4 shell. The molecular structure and composition of the NC are validated by combined experimental and theoretical results. Electronic structure calculations, using the density functional theory, show that the Pt2Cu34 NC is a 10-electron superatom. The computed absorption spectrum matches well with the measured data and allows for assignment of the absorption peaks. The calculations also rationalize energetics for ligand exchange observed in the mass spectrometry data. The synergistic effects induced by Pt doping are found to enhance the catalytic activity of Cu NCs by ∼300-fold in silane to silanol conversion under mild conditions. Furthermore, our synthetic strategy has potential to produce Ni-, Pd-, and Au-doped Cu NCs, which will open new avenues to uncover their molecular structures and catalytic properties.

20.
J Am Chem Soc ; 143(28): 10624-10632, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236187

RESUMO

Owing to the ionic nature of lead halide perovskites, their halide-terminated surface is unstable under light-, thermal-, moisture-, or electric-field-driven stresses, resulting in the formation of unfavorable surface defects. As a result, nonradiative recombination generally occurs on perovskite films and deteriorates the efficiency, stability, and hysteresis performances of perovskite solar cells (PSCs). Here, a surface iodide management strategy was developed through the use of cesium sulfonate to stabilize the perovskite surface. It was found that the pristine surface of common perovskite was terminated with extra iodide, that is, with an I-/Pb2+ ratio larger than 3, explaining the origination of surface-related problems. Through post-treatment of perovskite films by cesium sulfonate, the extra iodide on the surface was facilely removed and the as-exposed Pb2+ cations were chelated with sulfonate anions while maintaining the original 3D perovskite structure. Such iodide replacement and lead chelating coordination on perovskite could reduce the commonly existing surface defects and nonradiative recombination, enabling assembled PSCs with an efficiency of 22.06% in 0.12 cm2 cells and 18.1% in 36 cm2 modules with high stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA