Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Robot AI ; 8: 755150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722641

RESUMO

In this study, we implemented a model with which a robot expressed such complex emotions as heartwarming (e.g., happy and sad) or horror (fear and surprise) by its touches and experimentally investigated the effectiveness of the modeled touch behaviors. Robots that can express emotions through touching behaviors increase their interaction capabilities with humans. Although past studies achieved ways to express emotions through a robot's touch, such studies focused on expressing such basic emotions as happiness and sadness and downplayed these complex emotions. Such studies only proposed a model that expresses these emotions by touch behaviors without evaluations. Therefore, we conducted the experiment to evaluate the model with participants. In the experiment, they evaluated the perceived emotions and empathies from a robot's touch while they watched a video stimulus with the robot. Our results showed that the touch timing before the climax received higher evaluations than touch timing after for both the scary and heartwarming videos.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25570565

RESUMO

Magnetic nanoparticles (MNPs) coated with Protein-G have been a model system to be used in different antibodies binding study. It is highly desirable to use a substrate-free biosensing system to detect antibodies binding in real-time. In this paper, we developed and applied a MNPs and search-coils integrated detection system, which is not only sensitive to the hydrodynamic volume of MNPs but also sensitive to the environment of MNPs, such as viscosity and temperature of the solution. We demonstrated that the viscosity effect influenced the amplitudes and phases of the 3rd (fH±2fL) and 5th (fH±4fL) harmonics for the mixed frequency testing scheme. The binding between antibodies and Protein-G on MNPs increased hydrodynamic volume of particles, as a result, it also changed the amplitudes and phases of harmonics, which are the object signals we need to analyze. We demonstrated that the viscosity of antibody solution is lower than that of MNP solution, and the antibody binding effect could be shielded by the viscosity effect to certain extent.


Assuntos
Anticorpos/química , Nanopartículas/química , Imunoensaio , Fenômenos Magnéticos , Ligação Proteica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA