RESUMO
BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.
Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Avaliação Pré-Clínica de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Biópsia Líquida , Inibidores de Fosfoinositídeo-3 Quinase , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação/genéticaRESUMO
To reconstruct systematically hyperactive transcription factor (TF)-dependent transcription networks in squamous cell carcinomas (SCCs), a computational method (ELMER) was applied to 1293 pan-SCC patient samples, and 44 hyperactive SCC TFs were identified. As a top candidate, DLX5 exhibits a notable bifurcate re-configuration of its bivalent promoter in cancer. Specifically, DLX5 maintains a bivalent state in normal tissues; its promoter is hypermethylation, leading to DLX5 transcriptional silencing in esophageal adenocarcinoma (EAC). In stark contrast, DLX5 promoter gains active histone marks and becomes transcriptionally activated in ESCC, which is directly mediated by SOX2. Functionally, silencing of DLX5 substantially inhibits SCC viability both in vitro and in vivo. Mechanistically, DLX5 cooperates with TP63 in regulating â¼2000 enhancers and promoters, which converge on activating cancer-promoting pathways. Together, our data establish a novel and strong SCC-promoting factor and elucidate a new epigenomic mechanism - bifurcate chromatin re-configuration - during cancer development.
Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Adenocarcinoma/patologia , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA/genética , Neoplasias Esofágicas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genéticaRESUMO
Core regulatory circuitry (CRC)-dependent transcriptional network is critical for developmental tumors in children and adolescents carrying few gene mutations. However, whether and how CRC contributes to transcription regulation in Ewing sarcoma is unknown. Here, we identify and functionally validate a CRC 'trio' constituted by three transcription factors (TFs): KLF15, TCF4 and NKX2-2, in Ewing sarcoma cells. Epigenomic analyses demonstrate that EWS-FLI1, the primary fusion driver for this cancer, directly establishes super-enhancers of each of these three TFs to activate their transcription. In turn, KLF15, TCF4 and NKX2-2 co-bind to their own and each other's super-enhancers and promoters, forming an inter-connected auto-regulatory loop. Functionally, CRC factors contribute significantly to cell proliferation of Ewing sarcoma both in vitro and in vivo. Mechanistically, CRC factors exhibit prominent capacity of co-regulating the epigenome in cooperation with EWS-FLI1, occupying 77.2% of promoters and 55.6% of enhancers genome-wide. Downstream, CRC TFs coordinately regulate gene expression networks in Ewing sarcoma, controlling important signaling pathways for cancer, such as lipid metabolism pathway, PI3K/AKT and MAPK signaling pathways. Together, molecular characterization of the oncogenic CRC model advances our understanding of the biology of Ewing sarcoma. Moreover, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.
Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos Nus , Proteínas Nucleares , Proteínas de Fusão Oncogênica/fisiologia , Proteína Proto-Oncogênica c-fli-1/fisiologia , Proteína EWS de Ligação a RNA/fisiologia , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Transdução de Sinais , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Fatores de Transcrição , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND & AIMS: We investigated the transcriptome of esophageal squamous cell carcinoma (ESCC) cells, activity of gene regulatory (enhancer and promoter regions), and the effects of blocking epigenetic regulatory proteins. METHODS: We performed chromatin immunoprecipitation sequencing with antibodies against H3K4me1, H3K4me3, and H3K27ac and an assay for transposase-accessible chromatin to map the enhancer regions and accessible chromatin in 8 ESCC cell lines. We used the CRC_Mapper algorithm to identify core regulatory circuitry transcription factors in ESCC cell lines, and determined genome occupancy profiles for 3 of these factors. In ESCC cell lines, expression of transcription factors was knocked down with small hairpin RNAs, promoter and enhancer regions were disrupted by CRISPR/Cas9 genome editing, or bromodomains and extraterminal (BET) family proteins and histone deacetylases (HDACs) were inhibited with ARV-771 and romidepsin, respectively. ESCC cell lines were then analyzed by whole-transcriptome sequencing, immunoprecipitation, immunoblots, immunohistochemistry, and viability assays. Interactions between distal enhancers and promoters were identified and verified with circular chromosome conformation capture sequencing. NOD-SCID mice were given injections of modified ESCC cells, some mice where given injections of HDAC or BET inhibitors, and growth of xenograft tumors was measured. RESULTS: We identified super-enhancer-regulated circuits and transcription factors TP63, SOX2, and KLF5 as core regulatory factors in ESCC cells. Super-enhancer regulation of ALDH3A1 mediated by core regulatory factors was required for ESCC viability. We observed direct interactions between the promoter region of TP63 and functional enhancers, mediated by the core regulatory circuitry transcription factors. Deletion of enhancer regions from ESCC cells decreased expression of the core regulatory circuitry transcription factors and reduced cell viability; these same results were observed with knockdown of each core regulatory circuitry transcription factor. Incubation of ESCC cells with BET and HDAC disrupted the core regulatory circuitry program and the epigenetic modifications observed in these cells; mice given injections of HDAC or BET inhibitors developed smaller xenograft tumors from the ESCC cell lines. Xenograft tumors grew more slowly in mice given the combination of ARV-771 and romidepsin than mice given either agent alone. CONCLUSIONS: In epigenetic and transcriptional analyses of ESCC cell lines, we found the transcription factors TP63, SOX2, and KLF5 to be part of a core regulatory network that determines chromatin accessibility, epigenetic modifications, and gene expression patterns in these cells. A combination of epigenetic inhibitors slowed growth of xenograft tumors derived from ESCC cells in mice.
Assuntos
Epigênese Genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Montagem e Desmontagem da Cromatina , Epigênese Genética/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma , Carga Tumoral , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The eye movement analysis with hidden Markov models (EMHMM) method provides quantitative measures of individual differences in eye-movement pattern. However, it is limited to tasks where stimuli have the same feature layout (e.g., faces). Here we proposed to combine EMHMM with the data mining technique co-clustering to discover participant groups with consistent eye-movement patterns across stimuli for tasks involving stimuli with different feature layouts. Through applying this method to eye movements in scene perception, we discovered explorative (switching between the foreground and background information or different regions of interest) and focused (mainly looking at the foreground with less switching) eye-movement patterns among Asian participants. Higher similarity to the explorative pattern predicted better foreground object recognition performance, whereas higher similarity to the focused pattern was associated with better feature integration in the flanker task. These results have important implications for using eye tracking as a window into individual differences in cognitive abilities and styles. Thus, EMHMM with co-clustering provides quantitative assessments on eye-movement patterns across stimuli and tasks. It can be applied to many other real-life visual tasks, making a significant impact on the use of eye tracking to study cognitive behavior across disciplines.
Assuntos
Movimentos Oculares , Individualidade , Povo Asiático , Análise por Conglomerados , Humanos , Percepção VisualRESUMO
Identifying disease-causing variants among a large number of single nucleotide variants (SNVs) is still a major challenge. Recently, N6-methyladenosine (m6A) has become a research hotspot because of its critical roles in many fundamental biological processes and a variety of diseases. Therefore, it is important to evaluate the effect of variants on m6A modification, in order to gain a better understanding of them. Here, we report m6AVar (http://m6avar.renlab.org), a comprehensive database of m6A-associated variants that potentially influence m6A modification, which will help to interpret variants by m6A function. The m6A-associated variants were derived from three different m6A sources including miCLIP/PA-m6A-seq experiments (high confidence), MeRIP-Seq experiments (medium confidence) and transcriptome-wide predictions (low confidence). Currently, m6AVar contains 16 132 high, 71 321 medium and 326 915 low confidence level m6A-associated variants. We also integrated the RBP-binding regions, miRNA-targets and splicing sites associated with variants to help users investigate the effect of m6A-associated variants on post-transcriptional regulation. Because it integrates the data from genome-wide association studies (GWAS) and ClinVar, m6AVar is also a useful resource for investigating the relationship between the m6A-associated variants and disease. Overall, m6AVar will serve as a useful resource for annotating variants and identifying disease-causing variants.
Assuntos
Adenosina/análogos & derivados , Bases de Dados de Ácidos Nucleicos , RNA/genética , RNA/metabolismo , Adenosina/metabolismo , Animais , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Interface Usuário-ComputadorRESUMO
UNLABELLED: Biological sequence diagrams are fundamental for visualizing various functional elements in protein or nucleotide sequences that enable a summarization and presentation of existing information as well as means of intuitive new discoveries. Here, we present a software package called illustrator of biological sequences (IBS) that can be used for representing the organization of either protein or nucleotide sequences in a convenient, efficient and precise manner. Multiple options are provided in IBS, and biological sequences can be manipulated, recolored or rescaled in a user-defined mode. Also, the final representational artwork can be directly exported into a publication-quality figure. AVAILABILITY AND IMPLEMENTATION: The standalone package of IBS was implemented in JAVA, while the online service was implemented in HTML5 and JavaScript. Both the standalone package and online service are freely available at http://ibs.biocuckoo.org. CONTACT: renjian.sysu@gmail.com or xueyu@hust.edu.cn SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Genes , Anotação de Sequência Molecular/métodos , Proteínas , Software , Perfilação da Expressão Gênica , HumanosRESUMO
Small ubiquitin-like modifiers (SUMOs) regulate a variety of cellular processes through two distinct mechanisms, including covalent sumoylation and non-covalent SUMO interaction. The complexity of SUMO regulations has greatly hampered the large-scale identification of SUMO substrates or interaction partners on a proteome-wide level. In this work, we developed a new tool called GPS-SUMO for the prediction of both sumoylation sites and SUMO-interaction motifs (SIMs) in proteins. To obtain an accurate performance, a new generation group-based prediction system (GPS) algorithm integrated with Particle Swarm Optimization approach was applied. By critical evaluation and comparison, GPS-SUMO was demonstrated to be substantially superior against other existing tools and methods. With the help of GPS-SUMO, it is now possible to further investigate the relationship between sumoylation and SUMO interaction processes. A web service of GPS-SUMO was implemented in PHP+JavaScript and freely available at http://sumosp.biocuckoo.org.
Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Software , Sumoilação , Algoritmos , Internet , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de ProteínaRESUMO
Explainable AI (XAI) methods provide explanations of AI models, but our understanding of how they compare with human explanations remains limited. Here, we examined human participants' attention strategies when classifying images and when explaining how they classified the images through eye-tracking and compared their attention strategies with saliency-based explanations from current XAI methods. We found that humans adopted more explorative attention strategies for the explanation task than the classification task itself. Two representative explanation strategies were identified through clustering: One involved focused visual scanning on foreground objects with more conceptual explanations, which contained more specific information for inferring class labels, whereas the other involved explorative scanning with more visual explanations, which were rated higher in effectiveness for early category learning. Interestingly, XAI saliency map explanations had the highest similarity to the explorative attention strategy in humans, and explanations highlighting discriminative features from invoking observable causality through perturbation had higher similarity to human strategies than those highlighting internal features associated with higher class score. Thus, humans use both visual and conceptual information during explanation, which serve different purposes, and XAI methods that highlight features informing observable causality match better with human explanations, potentially more accessible to users.
RESUMO
Previous research indicates that higher testosterone levels are related to increased aggressive and dominant behaviors, particularly in males. One possible mechanism for these hormone-behavior associations could involve threat perception. However, the causal influence of testosterone on men's recognition of threatening facial expressions remains unknown. Here, we tested the causal effect of exogenous testosterone on men's sensitivity to facial threat by combining a psychophysical task with computational modeling. We administered a single dose (150 mg) of testosterone or placebo gel to healthy young men (n = 120) in a double-blind, placebo-controlled, between-participant design. Participants were presented with morphed emotional faces mixing anger/fear and neutral expressions and made judgments about the emotional expression. Across typical regression analysis, signal detection analysis, and drift diffusion modeling, our results consistently showed that individuals who received testosterone (versus placebo) exhibited a lower perceived sensitivity to angry facial expressions. But we observed no significant effects of testosterone administration on fearful facial expressions. The findings indicate that testosterone attenuates sensitivity to facial threat, especially angry facial expressions, which could lead to a misestimation of others' dominance and an increase in one's own aggressive and dominant behaviors.
Assuntos
Expressão Facial , Testosterona , Masculino , Humanos , Testosterona/farmacologia , Ira , Emoções , MedoRESUMO
Head and Neck Squamous Cell Carcinoma (HNSCC) remains a significant health burden due to tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. This study enrolled 31 HNSCC patients for the establishment of patient-derived tumor organoids (PDOs), which faithfully maintained genomic features and histopathological traits of primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, correlating ex vivo drug sensitivity with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition (hEMT)-like ITH program is associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin (AREG) as a potential regulator of the hybrid epithelial/mesenchymal state. Moreover, AREG contributes to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.
RESUMO
Unlike most cancer types, the incidence of esophageal adenocarcinoma (EAC) has rapidly escalated in the western world over recent decades. Using whole genome bisulfite sequencing (WGBS), we identify the transcription factor (TF) FOXM1 as an important epigenetic regulator of EAC. FOXM1 plays a critical role in cellular proliferation and tumor growth in EAC patient-derived organoids and cell line models. We identify ERBB2 as an upstream regulator of the expression and transcriptional activity of FOXM1. Unexpectedly, gene set enrichment analysis (GSEA) unbiased screen reveals a prominent anti-correlation between FOXM1 and immune response pathways. Indeed, syngeneic mouse models show that FOXM1 inhibits the infiltration of CD8+ T cells into the tumor microenvironment. Consistently, FOXM1 suppresses CD8+ T cell chemotaxis in vitro and antigen-dependent CD8+ T cell killing. This study characterizes FOXM1 as a significant EAC-promoting TF and elucidates its novel function in regulating anti-tumor immune response.
Assuntos
Adenocarcinoma , Linfócitos T CD8-Positivos , Neoplasias Esofágicas , Proteína Forkhead Box M1 , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Epigenômica , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Imunidade , Microambiente Tumoral/imunologiaRESUMO
Cis-regulatory elements (CREs) and super cis-regulatory elements (SCREs) are non-coding DNA regions which influence the transcription of nearby genes and play critical roles in development. Dysregulated CRE and SCRE activities have been reported to alter the expression of oncogenes and tumor suppressors, thereby regulating cancer hallmarks. To address the strong need for a comprehensive catalogue of dysregulated CREs and SCREs in human cancers, we present TSCRE (http://tscre.zsqylab.com/), an open resource providing tumor-specific and cell type-specific CREs and SCREs derived from the re-analysis of publicly available histone modification profiles. Currently, TSCRE contains 1 864 941 dysregulated CREs and 68 253 dysregulated SCREs identified from 1366 human patient samples spanning 17 different cancer types and 9 histone marks. Over 95% of these elements have been validated in public resources. TSCRE offers comprehensive annotations for each element, including associated genes, expression patterns, clinical prognosis, somatic mutations, transcript factor binding sites, cancer-type specificity, and drug response. Additionally, TSCRE integrates pathway and transcript factor enrichment analyses for each study, enabling in-depth functional and mechanistic investigations. Furthermore, TSCRE provides an interactive interface for users to explore any CRE and SCRE of interest. We believe TSCRE will be a highly valuable platform for the community to discover candidate cancer biomarkers.
RESUMO
Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common. Improving the efficacy of ICB therapy requires better understanding of the mechanism of immune evasion. Here, we identify that the SCC-master transcription factor TP63 suppresses interferon-γ (IFNγ) signaling. TP63 inhibition leads to increased CD8+ T cell infiltration and heighten tumor killing in in vivo syngeneic mouse model and ex vivo co-culture system, respectively. Moreover, expression of TP63 is negatively correlated with CD8+ T cell infiltration and activation in patients with SCC. Silencing of TP63 enhances the anti-tumor efficacy of PD-1 blockade by promoting CD8+ T cell infiltration and functionality. Mechanistically, TP63 and STAT1 mutually suppress each other to regulate the IFNγ signaling by co-occupying and co-regulating their own promoters and enhancers. Together, our findings elucidate a tumor-extrinsic function of TP63 in promoting immune evasion of SCC cells. Over-expression of TP63 may serve as a biomarker predicting the outcome of SCC patients treated with ICB therapy, and targeting TP63/STAT/IFNγ axis may enhance the efficacy of ICB therapy for this deadly cancer.
Assuntos
Carcinoma de Células Escamosas , Interferon gama , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunidade , Interferon gama/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Recent research has suggested that dynamic emotion recognition involves strong audiovisual association; that is, facial or vocal information alone automatically induces perceptual processes in the other modality. We hypothesized that different emotions may differ in the automaticity of audiovisual association, resulting in differential audiovisual information processing. Participants judged the emotion of a talking-head video under audiovisual, video-only (with no sound), and audio-only (with a static neutral face) conditions. Among the six basic emotions, disgust had the largest audiovisual advantage over the unimodal conditions in recognition accuracy. In addition, in the recognition of all the emotions except for disgust, participants' eye-movement patterns did not change significantly across the three conditions, suggesting mandatory audiovisual information processing. In contrast, in disgust recognition, participants' eye movements in the audiovisual condition were less eyes-focused than the video-only condition and more eyes-focused than the audio-only condition, suggesting that audio information in the audiovisual condition interfered with eye-movement planning for important features (eyes) for disgust. In addition, those whose eye-movement pattern was affected less by concurrent disgusted voice information benefited more in recognition accuracy. Disgust recognition is learned later in life and thus may involve a reduced amount of audiovisual associative learning. Consequently, audiovisual association in disgust recognition is less automatic and demands more attentional resources than other emotions. Thus, audiovisual information processing in emotion recognition depends on the automaticity of audiovisual association of the emotion resulting from associative learning. This finding has important implications for real-life emotion recognition and multimodal learning. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Assuntos
Asco , Reconhecimento Facial , Humanos , Tecnologia de Rastreamento Ocular , Emoções , Cognição , Aprendizagem , Expressão FacialRESUMO
Using background music (BGM) during learning is a common behavior, yet whether BGM can facilitate or hinder learning remains inconclusive and the underlying mechanism is largely an open question. This study aims to elucidate the effect of self-selected BGM on reading task for learners with different characteristics. Particularly, learners' reading task performance, metacognition, and eye movements were examined, in relation to their personal traits including language proficiency, working memory capacity, music experience and personality. Data were collected from a between-subject experiment with 100 non-native English speakers who were randomly assigned into two groups. Those in the experimental group read English passages with music of their own choice played in the background, while those in the control group performed the same task in silence. Results showed no salient differences on passage comprehension accuracy or metacognition between the two groups. Comparisons on fine-grained eye movement measures reveal that BGM imposed heavier cognitive load on post-lexical processes but not on lexical processes. It was also revealed that students with higher English proficiency level or more frequent BGM usage in daily self-learning/reading experienced less cognitive load when reading with their BGM, whereas students with higher working memory capacity (WMC) invested more mental effort than those with lower WMC in the BGM condition. These findings further scientific understanding of how BGM interacts with cognitive tasks in the foreground, and provide practical guidance for learners and learning environment designers on making the most of BGM for instruction and learning.
Assuntos
Movimentos Oculares , Música , Humanos , Compreensão , Idioma , LeituraRESUMO
Five new racemic N-acetyldopamine (NADA) trimers, asponchimides A-E (1-5), were isolated from Aspongopus chinensis, a prominent traditional Chinese medicinal insect employed for alleviating pain, treating indigestion, and addressing kidney ailments. Compounds 1-5 were successfully resolved by chiral high-performance liquid chromatography (HPLC), yielding five pairs of enantiomers: (+)- and (-)-asponchimides A-E (1a/1b-5a/5b). Their structural identities were discerned by extensive spectroscopic analyses, including high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR), and their absolute configurations were determined by electronic circular dichroism (ECD) calculations. Compounds 1-5 are pioneering instances of NADA trimers featuring a Δ7 double bond. When subjected to a series of bioassays, a majority of the compounds exhibited weak inhibitory activity against nitric oxide (NO) production in LPS-induced RAW 264.7 cells.
Assuntos
Dopamina , Óxido Nítrico , Estrutura Molecular , Espectroscopia de Ressonância MagnéticaRESUMO
ARID1A, a member of the chromatin remodeling SWI/SNF complex, is frequently lost in many cancer types, including esophageal adenocarcinoma (EAC). Here, we study the impact of ARID1A deficiency on the anti-tumor immune response in EAC. We find that EAC tumors with ARID1A mutations are associated with enhanced tumor-infiltrating CD8+ T cell levels. ARID1A-deficient EAC cells exhibit heightened IFN response signaling and promote CD8+ T cell recruitment and cytolytic activity. Moreover, we demonstrate that ARID1A regulates fatty acid metabolism genes in EAC, showing that fatty acid metabolism could also regulate CD8+ T cell recruitment and CD8+ T cell cytolytic activity in EAC cells. These results suggest that ARID1A deficiency shapes both tumor immunity and lipid metabolism in EAC, with significant implications for immune checkpoint blockade therapy in EAC.
RESUMO
BACKGROUND: Standard platinum-based therapy for ovarian cancer is inefficient against ovarian clear cell carcinoma (OCCC). OCCC is a distinct subtype of epithelial ovarian cancer. OCCC constitutes 25% of ovarian cancers in East Asia (Japan, Korea, China, Singapore) and 6-10% in Europe and North America. The cancer is characterized by frequent inactivation of ARID1A and 10% of cases of endometriosis progression to OCCC. The aim of this study was to identify drugs that are either FDA-approved or in clinical trials for the treatment of OCCC. RESULTS: High throughput screening of 166 compounds that are either FDA-approved, in clinical trials or are in pre-clinical studies identified several cytotoxic compounds against OCCC. ARID1A knockdown cells were more sensitive to inhibitors of either mTOR (PP242), dual mTOR/PI3K (GDC0941), ATR (AZD6738) or MDM2 (RG7388) compared to control cells. Also, compounds targeting BH3 domain (AZD4320) and SRC (AZD0530) displayed preferential cytotoxicity against ARID1A mutant cell lines. In addition, WEE1 inhibitor (AZD1775) showed broad cytotoxicity toward OCCC cell lines, irrespective of ARID1A status. CONCLUSIONS: In a selection of 166 compounds we showed that inhibitors of ATR and WEE1 were cytotoxic against a panel of OCCC cell lines. These two drugs are already in other clinical trials, making them ideal candidates for treatment of OCCC.
Assuntos
Adenocarcinoma de Células Claras , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias Ovarianas , Proteínas Tirosina Quinases , Feminino , Humanos , Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/patologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Epitelial do Ovário , Proteínas de Ciclo Celular/metabolismo , China , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
BACKGROUND: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging. RESULTS: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types. CONCLUSIONS: These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.