RESUMO
High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR)-based metabolomics has demonstrated its utility in studies of biofluids for various diseases. HRMAS NMR spectroscopy is uniquely well suited for analyzing human blood samples because of the small quantity of samples and minimal preparation required. To develop this methodology into standardized clinical protocols, establishment of the method's quality assurance (QA) and evaluations of its quality control (QC) are critical. This study aims to assess the QA/QC measured from human blood specimens in the form of serum and plasma through within-subject and between-subject comparisons, as well as stability and consistency comparisons over several freezing-thawing cycles of sample storage conditions, and most importantly, the agreement of pooled control samples against individual samples.
Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodosRESUMO
There is currently a crucial need for improved diagnostic techniques and targeted treatment methods for Alzheimer's disease (AD), a disease which impacts millions of elderly individuals each year. Metabolomic analysis has been proposed as a potential methodology to better investigate and understand the progression of this disease. In this report, we present our AD metabolomics results measured with high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) on human blood plasma samples obtained from AD and non-AD subjects. Our study centers on developments of AD and non-AD metabolomics differentiating models with procedures of quality assurance (QA) and quality control (QC) through pooled samples. Our findings suggest that analysis of blood plasma samples using HRMAS NMR has the potential to differentiate between diseased and healthy subjects, which has important clinical implications for future improvements in AD diagnosis methodologies.
RESUMO
The status of metabolomics as a scientific branch has evolved from proof-of-concept to applications in science, particularly in medical research. To comprehensively evaluate disease metabolomics, multiplatform approaches of NMR combining with mass spectrometry (MS) have been investigated and reported. This mixed-methods approach allows for the exploitation of each individual technique's unique advantages to maximize results. In this article, we present our findings from combined NMR and MS imaging (MSI) analysis of human lung and prostate cancers. We further provide critical discussions of the current status of NMR and MS combined human prostate and lung cancer metabolomics studies to emphasize the enhanced metabolomics ability of the multiplatform approach.