Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 601(7894): 573-578, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082415

RESUMO

Owing to rapid development in their efficiency1 and stability2, perovskite solar cells are at the forefront of emerging photovoltaic technologies. State-of-the-art cells exhibit voltage losses3-8 approaching the theoretical minimum and near-unity internal quantum efficiency9-13, but conversion efficiencies are limited by the fill factor (<83%, below the Shockley-Queisser limit of approximately 90%). This limitation results from non-ideal charge transport between the perovskite absorber and the cell's electrodes5,8,13-16. Reducing the electrical series resistance of charge transport layers is therefore crucial for improving efficiency. Here we introduce a reverse-doping process to fabricate nitrogen-doped titanium oxide electron transport layers with outstanding charge transport performance. By incorporating this charge transport material into perovskite solar cells, we demonstrate 1-cm2 cells with fill factors of >86%, and an average fill factor of 85.3%. We also report a certified steady-state efficiency of 22.6% for a 1-cm2 cell (23.33% ± 0.58% from a reverse current-voltage scan).

2.
Nano Lett ; 24(31): 9468-9476, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047142

RESUMO

Low-dimensional magnetic structures coupled with superconductors are promising platforms for realizing Majorana zero modes, which have potential applications in topological quantum computing. Here, we report a two-dimensional (2D) magnetic-superconducting heterostructure consisting of single-layer chromium diiodide (CrI2) on a niobium diselenide (NbSe2) superconductor. Single-layer CrI2 nanosheets, which hold antiferromagnetic (AFM) ground states by our first-principles calculations, were epitaxially grown on the layered NbSe2 substrate. Using scanning tunneling microscopy/spectroscopy, we observed robust in-gap states spatially located at the edge of the nanosheets and defect-induced zero-energy peaks inside the CrI2 nanosheets. Magnetic-flux vortices induced by an external field exhibit broken 3-fold rotational symmetry of the pristine NbSe2 superconductor, implying the efficient modulation of the interfacial superconducting states by the epitaxial CrI2 layer. A phenomenological model suggests the existence of chiral edge states in a 2D AFM-superconducting hybrid system with an even Chern number, providing a qualitatively plausible understanding for our experimental observation.

3.
J Am Chem Soc ; 146(35): 24681-24688, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39166837

RESUMO

Conjugated π-surfaces are ubiquitous in molecules and materials. However, large π-surfaces up to a few nanometers in size are difficult to construct in an atomically precise manner. They tend to aggregate because of strong π-π interactions, resulting in notorious problems for both purification and spectroscopic investigations. Here, by contrast, we report the design, synthesis, and full characterizations of a nonplanar nanographene 1, which has a large, precise, and nonstacked π-surface. It is soluble in common organic solvents and allows for thorough investigations. The structure of 1, comprising 85 fused rings with an extended π-surface of 3 nm in size, is unambiguously confirmed by single-crystal X-ray diffraction. Unusual electronic structures, record-high near-infrared absorption, pronounced magnetic shielding, and ultrastrong heteromolecular van der Waals complexations are demonstrated, enabling us to establish a clear structure-property relationship, which has been elusive for decades. These results have broad implications for studying and understanding various phenomena and processes relevant to both discrete and interacting π-surfaces.

4.
Phys Chem Chem Phys ; 23(38): 22155-22159, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34580696

RESUMO

Selective C-H bond activation of polycyclic aromatic hydrocarbons is challenging due to the relatively high bond dissociation energy and the existence of multiple equivalent C-H sites. Herein, we report a scanning tunneling microscopy study on the covalent coupling of pentacene molecules on Au(110) surfaces. The missing-row reconstruction of Au(110) surfaces strengthens the molecule-substrate interactions. At elevated temperatures (470-520 K), pentacenes undergo direct aryl-aryl coupling via C-H bond activation. Due to the anisotropic feature of the reconstructed Au(110) surface, pentacenes are preferentially oriented parallel or perpendicular, making the linear and T-shaped dimers the predominant products. Based on density functional theory calculations, the aryl C-H bond activation barrier is reduced to 1.42 eV on Au(110)-(1 × 3) reconstructed surfaces, at which the extra row of gold atoms located in the (1 × 3) reconstructed grooves plays a key role.

5.
Phys Chem Chem Phys ; 21(32): 17836-17845, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378800

RESUMO

In organic-inorganic hybrid perovskite solar cells, though the current density-voltage (J-V) hysteresis phenomenon is accepted to be caused by ion migration coupled with charge carrier recombination, there are still rich hysteresis characteristics (various J-V hysteresis loops) remaining to be explained. Here, a systematic drift-diffusion simulation study is conducted to explore the effect of interfacial recombination lifetime (τinterface), bulk charge carrier lifetime (τbulk) and mobility (µ) on J-V hysteresis behaviors. The simulation results show that, for devices with only interfacial recombination, the decrease of τinterface will lead to J-V hysteresis loops with a large gap on the open circuit side. For devices with only bulk recombination, the drop of τbulk will lead to J-V hysteresis loops with a large gap on the short circuit side. Meanwhile, in both cases, the decrease of µ aggravates the effect of interfacial and bulk recombination, while it has no effect on VOC. Our simulations reveal the effect of decreased τinterface, τbulk and µ on the J-V characteristics and explain the hysteresis loops with specific shapes, which have been reported in the literature.

6.
J Am Chem Soc ; 140(12): 4222-4226, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537262

RESUMO

We report the synthesis and characterization of two hexapole [7]helicenes (H7Hs). Single crystal X-ray diffraction unambiguously confirms the molecular structure. H7H absorbs light, with distinct Cotton effect, from ultraviolet to the near-infrared (λmax = 618 nm). Cyclic voltammetry reveals nine reversible redox states, consecutively from -2 to +6. These chiroptical and electronic properties of H7H are inaccessible from helicene's small homologues.

7.
J Am Chem Soc ; 140(14): 4820-4825, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29432011

RESUMO

Surface-assisted polymerization of alkanes is a remarkable reaction for which the surface reconstruction of Au(110) is crucial. The surface of (1×2)-Au(110) precovered with molecules can be completely transformed into (1×3)-Au(110) by introducing branched methylidene groups on both sides of the aliphatic chain (18, 19-dimethylidenehexatriacontane) or locally shifted into (1×3)-Au(110) under exposure to low-energy electrons (beam energy from 3.5 to 33.6 eV, for alkane dotriacontane). Scanning tunneling microscopy investigations demonstrate that alkane chains adsorbed on (1×3)-Au(110) are more reactive than on (1×2)-Au(110), presenting a solid experimental proof for structure-reactivity relationships. This difference can be ascribed to the existence of an extra row of gold atoms in the groove of (1×3)-Au(110), providing active sites of Au atoms with lower coordination number. The experimental results are further confirmed by density functional theory simulations.

8.
Phys Chem Chem Phys ; 20(17): 12217-12222, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29687133

RESUMO

The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.

9.
J Am Chem Soc ; 137(12): 4022-5, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25775004

RESUMO

The narrowest armchair graphene nanoribbon (AGNR) with five carbons across the width of the GNR (5-AGNR) was synthesized on Au(111) surfaces via sequential dehalogenation processes in a mild condition by using 1,4,5,8-tetrabromonaphthalene as the molecular precursor. Gold-organic hybrids were observed by using high-resolution scanning tunneling microscopy and considered as intermediate states upon AGNR formation. Scanning tunneling spectroscopy reveals an unexpectedly large band gap of Δ = 2.8 ± 0.1 eV on Au(111) surface which can be interpreted by the hybridization of the surface states and the molecular states of the 5-AGNR.

10.
Chemphyschem ; 16(7): 1356-60, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25752674

RESUMO

Linear alkanes undergo different C-C bond chemistry (coupling or dissociation) thermally activated on anisotropic metal surfaces depending on the choice of the substrate material. Owing to the one-dimensional geometrical constraint, selective dehydrogenation and C-C coupling (polymerization) of linear alkanes take place on Au(110) surfaces with missing-row reconstruction. However, the case is dramatically different on Pt(110) surfaces, which exhibit similar reconstruction as Au(110). Instead of dehydrogenative polymerization, alkanes tend to dehydrogenative pyrolysis, resulting in hydrocarbon fragments. Density functional theory calculations reveal that dehydrogenation of alkanes on Au(110) surfaces is an endothermic process, but further C-C coupling between alkyl intermediates is exothermic. On the contrary, due to the much stronger C-Pt bonds, dehydrogenation on Pt(110) surfaces is energetically favorable, resulting in multiple hydrogen loss followed by C-C bond dissociation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA