Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Mol Cell Cardiol ; 174: 63-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436251

RESUMO

Whether long noncoding RNAs participate in the formation of abdominal aortic aneurysms (AAAs) through the regulation of SMC phenotypic switching is unknown. lincRNA-p21 induced by reactive oxygen species (ROS) is likely functionally associated with SMC phenotypic switching. We thus investigated the role of lincRNA-p21 in SMC phenotypic switching-associated AAA formation and its underlying mechanisms. An analysis of human and mouse abdominal aortic samples revealed that the lincRNA-p21 levels were significantly higher in AAA tissue. Stimulation with hydrogen peroxide upregulated the expression of lincRNA-p21 in a dose-dependent manner and converted SMCs from a contractile phenotype to a synthetic, proteolytic, and proinflammatory phenotype in vitro. Moreover, lincRNA-p21 promoted fracture of elastic fibres, reconstruction of the vascular wall, and AAA formation in vivo by modulating SMC phenotypic switching in two mouse models of AAA induced by angiotensin II or porcine pancreatic elastase (PPE) perfusion. Using a bioinformatics prediction method and luciferase reporter gene assays, we further proved that lincRNA-p21 sponged miR-204-5p to release the transcriptional activity of Mekk3 and promoted the NF-κB pathway and thereby played a role in the SMC phenotypic switch and AAA formation. The ROS levels were positively correlated with the lincRNA-p21 levels in human and mouse AAA tissues. The knockdown of lincRNA-p21 in a PPE-induced mouse AAA model increased the miR-204-5p levels and reduced the expression of Mekk3, whereas lincRNA-p21 overexpression had the opposite effect. Collectively, the results indicated that ROS-induced lincRNA-p21 sponges miR-204-5p to accelerate synthetic and proinflammatory SMC phenotypes through the Mekk3/NF-κB pathway in AAA formation. Thus, lincRNA-p21 may have therapeutic potential for AAA formation.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Fenótipo , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Mol Ther ; 30(2): 915-931, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547461

RESUMO

Macrophage polarization plays a crucial role in regulating abdominal aortic aneurysm (AAA) formation. Circular RNAs (circRNAs) are important regulators of macrophage polarization during the development of cardiovascular diseases. How-ever, the roles of circRNAs in regulating AAA formation through modulation of macrophage polarization remain unknown. In the present study, we compared circRNA microarray data under two distinct polarizing conditions (M1 and M2 macrophages) and identified an M1-enriched circRNA, circCdyl. Loss- and gain-of-function assay results demonstrated that circCdyl overexpression accelerated angiotensin II (Ang II)- and calcium chloride (CaCl2)-induced AAA formation by promoting M1 polarization and M1-type inflammation, while circCdyl deficiency showed the opposite effects. RNA pulldown, mass spectrometry analysis, and RNA immunoprecipitation (RIP) assays were conducted to elucidate the underlying mechanisms by which circCdyl regulates AAA formation and showed that circCdyl promotes vascular inflammation and M1 polarization by inhibiting interferon regulatory factor 4 (IRF4) entry into the nucleus, significantly inducing AAA formation. In addition, circCdyl was shown to act as a let-7c sponge, promoting C/EBP-δ expression in macrophages to induce M1 polarization. Our results indicate an important role for circCdyl-mediated macrophage polarization in AAA formation and provide a potent therapeutic target for AAA treatment.


Assuntos
Aneurisma da Aorta Abdominal , RNA Circular , Angiotensina II , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Circular/genética
3.
Arch Virol ; 166(11): 3221-3224, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515865

RESUMO

Equine hepacivirus (EqHV) is a newly discovered hepatitis C virus-like virus that can infect equines. EqHV strains circulating worldwide have been classified into subtypes 1-3. In previous studies, we detected the presence of EqHV strains of subtype 1 and 3 in China. To determine whether EqHV strains of subtype 2 are prevalent in China, serum samples were collected from 133 racehorses in Guangdong province in 2021 and were tested for EqHV RNA by RT-PCR, and the positive rate was 9% (12/133). Sequencing of the NS3 gene revealed that one field strain (GD2021) had a high degree of genetic similarity to EqHV strains of subtype 2. Subsequent genome sequencing and analysis demonstrated that strain GD2021 belongs to subtype 2. The present study enriches our knowledge about the genetic diversity of EqHV in China.


Assuntos
Hepacivirus/genética , Hepatite C/veterinária , Doenças dos Cavalos/virologia , Filogenia , Animais , China/epidemiologia , Genoma Viral , Hepacivirus/isolamento & purificação , Hepatite C/epidemiologia , Hepatite C/virologia , Doenças dos Cavalos/epidemiologia , Cavalos , Proteínas não Estruturais Virais/genética
4.
Heart Surg Forum ; 24(3): E474-E478, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34173760

RESUMO

AIMS: To explore the feasibility, safety, and efficacy of 1-stop treatment of percutaneous left atrial appendage occlusion (LAAO) combined with coronary intervention for patients with nonvalvular atrial fibrillation (AF) complicated with coronary heart disease (CHD). METHODS AND RESULTS: We retrospectively analyzed the clinical data of 6 patients with AF combined with CHD admitted from Zhuhai People's Hospital from April 2017 to June 2018. After the operation, all patients were treated with aspirin (100 mg qd) and clopidogrel (75 mg qd) for 1 year, which is considered long-term use of aspirin/clopidogrel. The effects of LAAO and coronary intervention were evaluated immediately. The location of the left atrial appendage occluder, thrombosis, residual leak, and clinical manifestations were observed during the 90-day follow-up. The patients were implanted with Watchman™ devices and coronary stents. After the operation, the immediate sealing effect was satisfactory. The Watchman occluder was used in accordance with the PASS principle (position, anchor, size, seal), and the coronary intervention was satisfactory. During the operation, there were no device-related thrombosis, tamponade, or vascular complications. Follow-up results showed that in the 6 patients, there were no hemorrhagic strokes, worsening heart function, residual leakage, device-related thrombosis, angina pectoris, myocardial infarction, skin ecchymosis, gastrointestinal bleeding, or cerebral hemorrhage. CONCLUSION: For patients with nonvalvular AF combined with CHD, the safety and feasibility of 1-stop treatment with left atrial appendage and coronary intervention are reliable, and the curative effects were also satisfactory at short- and medium-term follow-up.


Assuntos
Apêndice Atrial/cirurgia , Fibrilação Atrial/complicações , Cateterismo Cardíaco/métodos , Doença das Coronárias/complicações , Intervenção Coronária Percutânea/métodos , Hemorragia Pós-Operatória/prevenção & controle , Medição de Risco/métodos , Idoso , Idoso de 80 Anos ou mais , Apêndice Atrial/diagnóstico por imagem , Fibrilação Atrial/terapia , Procedimentos Cirúrgicos Cardíacos/métodos , China/epidemiologia , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença das Coronárias/terapia , Ecocardiografia Transesofagiana/métodos , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Hemorragia Pós-Operatória/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Dispositivo para Oclusão Septal , Resultado do Tratamento
5.
Arterioscler Thromb Vasc Biol ; 39(1): e10-e25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580562

RESUMO

Objective- Vascular smooth muscle cell phenotypic transition plays a critical role in the formation of abdominal aortic aneurysms (AAAs). SM22α (smooth muscle 22α) has a vital role in maintaining the smooth muscle cell phenotype and is downregulated in AAA. However, whether manipulation of the SM22α gene influences the pathogenesis of AAA is unclear. Here, we investigated whether SM22α prevents AAA formation and explored the underlying mechanisms. Approach and Results- In both human and animal AAA tissues, a smooth muscle cell phenotypic switch was confirmed, as manifested by the downregulation of SM22α and α-SMA (α-smooth muscle actin) proteins. The methylation level of the SM22α gene promoter was dramatically higher in mouse AAA tissues than in control tissues. SM22α knockdown in ApoE-/- (apolipoprotein E-deficient) mice treated with Ang II (angiotensin II) accelerated the formation of AAAs, as evidenced by a larger maximal aortic diameter and more medial elastin degradation than those found in control mice, whereas SM22α overexpression exerted opposite effects. Similar results were obtained in a calcium chloride-induced mouse AAA model. Mechanistically, SM22α deficiency significantly increased reactive oxygen species production and NF-κB (nuclear factor-κB) activation in AAA tissues, whereas SM22α overexpression produced opposite effects. NF-κB antagonist SN50 or antioxidant N-acetyl-L-cysteine partially abrogated the exacerbating effects of SM22α silencing on AAA formation. Conclusions- SM22α reduction in AAAs because of the SM22α promoter hypermethylation accelerates AAA formation through the reactive oxygen species/NF-κB pathway, and therapeutic approaches to increase SM22α expression are potentially beneficial for preventing AAA formation.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , NF-kappa B/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Metilação de DNA , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , NADPH Oxidases/metabolismo , Fenótipo , Fosforilação , Regiões Promotoras Genéticas
6.
BMC Cardiovasc Disord ; 20(1): 32, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992206

RESUMO

BACKGROUND: The gut microbiome plays an important role in various cardiovascular diseases, such as atherosclerosis and hypertension, which are associated with abdominal aortic aneurysms (AAAs). METHODS: Here, we used 16S rRNA sequencing to explore gut microbiota in C57BL ApoE-/- mice with AAAs. A mouse model of abdominal aortic aneurysms was induced with angiotensin II (Ang II) (1000 ng/min per kg). On day 28 after the operation, fecal samples were collected and stored at - 80 °C until DNA extraction. We determined the relative abundances of bacterial taxonomic groups using 16S rRNA amplicon metabarcoding, and sequences were analyzed using a combination of mother software and UPARSE. RESULTS: We found that the gut microbiome was different between control and AAA mice. The results of correlation analysis between AAA diameter and the gut microbiome as well as LEfSe of the genera Akkermansia, Odoribacter, Helicobacter and Ruminococcus might be important in the progression of AAAs. CONCLUSIONS: AAA mice is subjected to gut microbial dysbiosis, and gut microbiota might be a potential target for further investigation.


Assuntos
Aneurisma da Aorta Abdominal/microbiologia , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Intestinos/microbiologia , Angiotensina II , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Bactérias/genética , Bactérias/isolamento & purificação , Modelos Animais de Doenças , Disbiose , Fezes/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Ribotipagem
7.
J Mol Cell Cardiol ; 131: 66-81, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991034

RESUMO

Abdominal aortic aneurysm (AAA) is accepted as a chronic vascular inflammatory disease. However, how the inflammatory response is regulated during AAA formation is not fully understood. This study was undertaken to determine whether the long noncoding RNA (lncRNA) H19 (H19) promotes AAA formation by enhancing aortic inflammation. qRT-PCR detected the upregulation of H19 in human and mouse AAA tissue samples. Co-staining for H19 and the macrophage marker MAC-2 showed that H19 was located in vascular smooth muscle cells (VSMCs) and infiltrating aortic macrophages. In vivo overexpression of H19 increased vascular inflammation and induced AAA formation, which was supported by exacerbated aortic morphology, maximum aortic diameter values, elastin degradation, expression of interleukin-6 (IL-6) and macrophage chemoattractant protein-1 (MCP-1), and macrophage infiltration. H19 suppression resulted in the opposite effects. A rescue experiment indicated that IL-6 neutralization significantly mitigated the aortic inflammation and AAA formation evoked by H19 overexpression. Luciferase reporter assays and ex vivo experiments using VSMCs and macrophages confirmed that H19 induced aneurysm formation in part via endogenous competition with the let-7a microRNA to induce the transcription of its target gene, IL-6. This mechanism was further validated by in vivo experiments using a mutant H19 that could not effectively bind let-7a. Collectively, our study revealed a pathogenic H19/let-7a/IL-6 inflammatory pathway in AAA formation, which offers a new potential therapeutic strategy for AAA.


Assuntos
Aneurisma da Aorta Abdominal/genética , Inflamação/genética , RNA Longo não Codificante/genética , Angiotensina II/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-6/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais/genética , Transcrição Gênica/genética , Regulação para Cima/genética
8.
Clin Sci (Lond) ; 133(3): 425-441, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30679264

RESUMO

MiRNAs regulate the cardiomyocyte (CM) cell cycle at the post-transcriptional level, affect cell proliferation, and intervene in harmed CM repair post-injury. The present study was undertaken to characterize the role of let-7i-5p in the processes of CM cell cycle and proliferation and to reveal the mechanisms thereof. In the present study, we used real-time qPCR (RT-qPCR) to determine the up-regulated let-7i-5p in CMs during the postnatal switch from proliferation to terminal differentiation and further validated the role of let-7i-5p by loss- and gain-of-function of let-7i-5p in CMs in vitro and in vivo We found that the overexpression of let-7i-5p inhibited CM proliferation, whereas the suppression of let-7i-5p significantly facilitated CM proliferation. E2F2 and CCND2 were identified as the targets of let-7i-5p, mediating its effect in regulating the cell cycle of CMs. Supperession of let-7i-5p promoted the recovery of heart function post-myocardial infarction by enhancing E2F2 and CCND2. Collectively, our results revealed that let-7i-5p is involved in the regulation of the CM cell cycle and further impacts proliferation, which may offer a new potential therapeutic strategy for cardiac repair after ischemic injury.


Assuntos
Proliferação de Células , Ciclina D2/metabolismo , Fator de Transcrição E2F2/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Ciclina D2/genética , Fator de Transcrição E2F2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia
9.
Clin Sci (Lond) ; 133(13): 1439-1455, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235554

RESUMO

The long non-coding RNA (lncRNA) PTENP1 is a pseudogene of phosphatase and tensin homologue deleted on chromosome ten (PTEN), has been implicated in smooth muscle cell (SMC) proliferation and apoptosis. PTENP1 is the pseudogene of PTEN. However, it is unclear whether and how PTENP1 functions in the proliferation and apoptosis of human aortic SMCs (HASMCs). Here, we hypothesised that PTENP1 inhibits HASMC proliferation and enhances apoptosis by promoting PTEN expression. PCR analysis and Western blot assays respectively showed that both PTENP1 and PTEN were up-regulated in human aortic dissection (AD) samples. PTENP1 overexpression significantly increased the protein expression of PTEN, promoted apoptosis and inhibited the proliferation of HASMCs. PTENP1 silencing exhibited the opposite effects and mitigated H2O2-induced apoptosis of HASMCs. In an angiotensin II (Ang II)-induced mouse aortic aneurysm (AA) model, PTENP1 overexpression potentiated aortic SMC apoptosis, exacerbated aneurysm formation. Mechanistically, RNA pull-down assay and a series of luciferase reporter assays using miR-21 mimics or inhibitors identified PTENP1 as a molecular sponge for miR-21 to endogenously compete for the binding between miR-21 and the PTEN transcript, releasing PTEN expression. This finding was further supported by in vitro immunofluorescent evidence showing decreased cell apoptosis upon miR-21 mimic administration under baseline PTENP1 overexpression. Ex vivo rescue of PTEN significantly mitigated the SMC apoptosis induced by PTENP1 overexpression. Finally, Western blot assays showed substantially reduced Akt phosphorylation and cyclin D1 and cyclin E levels with up-regulated PTENP1 in HASMCs. Our study identified PTENP1 as a mediator of HASMC homeostasis and suggests that PTENP1 is a potential target in AD or AA intervention.


Assuntos
Aneurisma Aórtico/metabolismo , Dissecção Aórtica/metabolismo , Apoptose , Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pseudogenes , RNA Longo não Codificante/metabolismo , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Ciclo Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
10.
J Mol Cell Cardiol ; 122: 152-164, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125571

RESUMO

Long noncoding RNAs (lncRNAs) play critical roles in the development of myocardial hypertrophy and may stimulate endogenous myocardial regeneration to prevent heart failure after myocardial infarction (MI). However, whether lncRNAs are involved in regulating myocardial regeneration after MI remains unclear. The present study aimed to identify human-derived lncRNAs that are involved in endogenous cardiomyocyte (CM) regeneration. By analyzing publicly available RNA-seq data of human fetal and normal adult cardiac tissues, we identified a novel human-derived adult upregulated lncRNA designated cardiomyocyte regeneration-related lncRNA (CRRL). Bioinformatics analysis indicated that CRRL is involved in the negative regulation of CM proliferation. First, we observed that the loss of CRRL attenuates post-MI remodeling and preserves cardiac function in adult rats. Through loss-of-function approaches, we found that CRRL knockdown promotes neonatal rat CM proliferation both in vivo and in vitro. Furthermore, we demonstrated that CRRL acts as a competing endogenous RNA (ceRNA) by directly binding to miR-199a-3p and thereby increasing the expression of Hopx, a target gene of miR-199a-3p and a critical negative regulatory factor of CM proliferation. Thus, CRRL suppresses cardiomyocyte regeneration by directly binding to miR-199a-3p, indicating that loss of CRRL facilitates myocardial regeneration and may be a new potential therapeutic strategy for heart failure.


Assuntos
Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regeneração/fisiologia , Análise de Variância , Animais , Cardiomegalia/metabolismo , Proliferação de Células , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Estatísticas não Paramétricas , Transfecção , Remodelação Ventricular
11.
Crit Care Med ; 46(9): e912-e920, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29965834

RESUMO

OBJECTIVES: Effective treatment for microvascular thrombosis-induced coronary no-reflow remains an unmet clinical need. This study sought to evaluate whether diagnostic ultrasound and microbubbles treatment could improve outcomes of coronary no-reflow by dissolving platelet- and erythrocyte-rich microthrombi. DESIGN: Randomized controlled laboratory investigation. SETTING: Research laboratory. SUBJECTS: Mongrel dogs. INTERVENTIONS: Coronary no-reflow models induced by platelet- or erythrocyte-rich microthrombi were established and randomly assigned to control, ultrasound, recombinant tissue-type plasminogen activator, ultrasound + microbubbles, or ultrasound + microbubbles + recombinant tissue-type plasminogen activator group. All treatments lasted for 30 minutes. MEASUREMENTS AND MAIN RESULTS: Percentage of microemboli-obstructed coronary arterioles was lower in ultrasound + microbubbles group than that in control group for platelet- (> 50% obstruction: 10.20% ± 3.56% vs 31.80% ± 3.96%; < 50% obstruction: 14.80% ± 4.15% vs 28.20% ± 3.56%) and erythrocyte-rich microthrombi (> 50% obstruction: 8.20% ± 3.11% vs 30.60% ± 4.83%; < 50% obstruction: 12.80% ± 4.15% vs 25.80% ± 3.70%) (p < 0.001). Percentage change of myocardial blood flow in left anterior descending artery-dominated region, left ventricular ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles group than that in control group for both types of microthrombi (p < 0.001). Percentage change of myocardial blood flow, ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles and ultrasound + microbubbles + recombinant tissue-type plasminogen activator groups than that in recombinant tissue-type plasminogen activator group for platelet-rich microthrombi (p < 0.05). CONCLUSIONS: Ultrasound + microbubbles treatment could dissolve platelet- and erythrocyte-rich microthrombi, thereby improving outcomes of coronary no-reflow, making it a promising supplement to current reperfusion therapy for acute ST-segment elevation myocardial infarction.


Assuntos
Trombose Coronária/diagnóstico por imagem , Trombose Coronária/terapia , Microbolhas/uso terapêutico , Terapia Trombolítica/métodos , Animais , Modelos Animais de Doenças , Cães , Distribuição Aleatória , Resultado do Tratamento , Ultrassonografia
12.
Stroke ; 47(5): 1344-53, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048701

RESUMO

BACKGROUND AND PURPOSE: Microthrombi originating from disintegrated clots or formed in situ may account for the poor clinical improvement of acute ischemic stroke after recanalization therapy. We attempted to determine whether microbubble-mediated sonothrombolysis could dissolve platelet-rich and erythrocyte-rich microthrombi, thereby reducing their brain injury-causing potential. METHODS: Platelet- and erythrocyte-rich microthrombosis were induced by periadventitial application of 5% ferric chloride or thrombin to mesenteric microvessels in 75 Sprague-Dawley rats. Acute ischemic stroke was induced by intracarotid injection of platelet- or erythrocyte-rich microthrombi in another 50 rats. Rats were randomly divided into control (CON), ultrasound (US), ultrasound and microbubble (US+MB), recombinant tissue-type plasminogen activator (r-tPA), and US+MB+r-tPA groups. The post-treatment mesenteric microvessel recanalization rates, cerebral infarct volumes, and neurological scores were determined. RESULTS: The recanalization rates of platelet- and erythrocyte-rich microthrombi in mesenteric microvessels were higher (P<0.05), and the cerebral infarct volumes and neurological scores of rats with either microthrombi were lower in the US+MB group than in the CON group (P<0.01). The infarct volumes and neurological scores were greater in the r-tPA group than in the US+MB and US+MB+r-tPA groups after treatment of rats with platelet-rich microthrombi (P<0.05). In contrast, after treatment of rats with erythrocyte-rich microthrombi, the infarct volumes and neurological scores were similar in the r-tPA and US+MB groups, but smaller in the US+MB+r-tPA group (P<0.05). CONCLUSIONS: Microbubble-mediated sonothrombolysis improved the outcomes of microthrombi-induced acute ischemic stroke. Thus, this method may serve as an attractive adjunct to recanalization therapy for acute ischemic stroke.


Assuntos
Isquemia Encefálica/terapia , Fibrinolíticos/farmacologia , Trombose Intracraniana/terapia , Trombólise Mecânica/métodos , Microbolhas/uso terapêutico , Acidente Vascular Cerebral/terapia , Ativador de Plasminogênio Tecidual/farmacologia , Terapia por Ultrassom/métodos , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/etiologia , Terapia Combinada , Modelos Animais de Doenças , Trombose Intracraniana/complicações , Trombose Intracraniana/diagnóstico por imagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
13.
Clin Sci (Lond) ; 130(23): 2105-2120, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609823

RESUMO

Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (P<0.05). Both UTMD and delayed BMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both P<0.05). Histopathology demonstrated that UTMD combined with delayed BMC transplantation increased capillary density, myocardial cell proliferation and c-kit+ cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit+ cells.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Infarto do Miocárdio/terapia , Ultrassom/métodos , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Humanos , Masculino , Microbolhas , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Ratos , Ratos Wistar , Troponina I/metabolismo
14.
J Adv Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821358

RESUMO

INTRODUCTION: Sympathetic hyperinnervation plays an important role in modulating the vascular smooth muscle cell (VSMC) phenotype and vascular diseases, but its role in abdominal aortic aneurysm (AAA) is still unknown. OBJECTIVES: This study aimed to investigate the role of sympathetic hyperinnervation in promoting AAA development and the underlying mechanism involved. METHODS: Western blotting and immunochemical staining were used to detect sympathetic hyperinnervation. We performed sympathetic denervation through coeliac ganglionectomy (CGX) and 6-OHDA administration to understand the role of sympathetic hyperinnervation in AAA and investigated the underlying mechanisms through transcriptome and functional studies. Sema4D knockout (Sema4D-/-) mice were utilized to determine the involvement of Sema4D in inducing sympathetic hyperinnervation and AAA development. RESULTS: We observed sympathetic hyperinnervation, the most important form of sympathetic neural remodeling, in both mouse AAA models and AAA patients. Elimination of sympathetic hyperinnervation by CGX or 6-OHDA significantly inhibited AAA development and progression. We further revealed that sympathetic hyperinnervation promoted VSMC phenotypic switching in AAA by releasing extracellular ATP (eATP) and activating eATP-P2rx4-p38 signaling. Moreover, single-cell RNA sequencing revealed that Sema4D secreted by osteoclast-like cells induces sympathetic nerve diffusion and hyperinnervation through binding to Plxnb1. We consistently observed that AAA progression was significantly ameliorated in Sema4D-deficient mice. CONCLUSIONS: Sympathetic hyperinnervation driven by osteoclast-like cell-derived Sema4D promotes VSMC phenotypic switching and accelerates pathological aneurysm progression by activating the eATP/P2rx4/p38 pathway. Inhibition of sympathetic hyperinnervation emerges as a potential novel therapeutic strategy for preventing and treating AAA.

15.
Viruses ; 15(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851607

RESUMO

Canine influenza virus (CIV) significantly threatens the canine population and public health. Tetherin, an innate immune factor, plays an important role in the defense against pathogen invasion and has been discovered to restrict the release of various enveloped viruses. Two isoforms of canine tetherin (tetherin-X1 and tetherin-X2) were identified in peripheral blood leukocytes of mixed-breed dogs using reverse transcription polymerase chain reaction (RT-PCR). Amino acid alignment revealed that relative to full-length tetherin (tetherin-X1) and truncated canine tetherin (tetherin-X2) exhibited deletion of 34 amino acids. The deletion occurred at the C-terminus of the coiled-coiled ectodomain and the N-terminus of the glycosylphosphatidylinositol (GPI)-anchor domain. Tetherin-X2 was localized subcellularly at the cell membrane, which was consistent with the localization of tetherin-X1. In addition, canine tetherin-X1 and tetherin-X2 restricted the release of H3N2 CIV. However, canine tetherin-X1 had higher antiviral activity than canine tetherin-X2, indicating that the C-terminus of the coiled-coiled ectodomain and the N-terminus of the GPI-anchor domain of canine tetherin (containing the amino acids deleted in tetherin-X2) are critical for its ability to restrict H3N2 CIV release. This study provides insights for understanding the key functional domains of tetherin that restrict CIV release.


Assuntos
Antivirais , Antígeno 2 do Estroma da Médula Óssea , Doenças do Cão , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae , Animais , Cães , Aminoácidos , Antivirais/imunologia , Antivirais/uso terapêutico , Antígeno 2 do Estroma da Médula Óssea/imunologia , Antígeno 2 do Estroma da Médula Óssea/uso terapêutico , Glicosilfosfatidilinositóis , Vírus da Influenza A Subtipo H3N2/imunologia , Isoformas de Proteínas/genética , Doenças do Cão/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária
16.
Virus Res ; 338: 199227, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793437

RESUMO

The torque teno canis virus (TTCaV) was first reported in 2001 and it shares similarities with the known Torque teno virus (TTV) in terms of genomic organization and putative transcriptional features. It is a single-stranded DNA virus characterized by high rates of recombination and nucleotide substitution, like RNA viruses. Studies reported recombination events in torque teno virus; however, there is limited reporting of TTCaV reorganization events. This study screened fecal samples from domestic dogs in Henan Province. There was a positivity rate of 16.5% (19/115) for TTCaV. Four nearly complete TTCaV genomes, namely Canine/HeNan/4, 5, 6, and 13/2019, were obtained from the 19 positive fecal samples, whose genome sequence was obtained using gap-filling PCR. Sequence analysis revealed two unique amino acid mutation sites in the TTCaV strains, K278Q (compared with the first isolate Cf-TTV10 in Japan) and V/L268I (compared with the TTCaV strain from southern China). Subsequently, 17 near full-length TTCaV genome sequences were subjected to phylogenetic and recombination detection program analyzes. We obtained evidence supporting recombination events in the Chinese TTCaV strains. These findings suggest that mutation and recombination occurred in the three individual gene segments (ORF1, ORF2, ORF3) and the untranslated region, an area of major recombination in the Chinese TTCaV strain GX265 genome. Interestingly, the TTCaV strain (Canine/HeNan/6/2019) was a major parent involved in the genetic recombination of the GX265 strain. This study provides insights into the genetic variability and evolution of TTCaV.


Assuntos
Infecções por Vírus de DNA , Torque teno virus , Cães , Animais , Regiões não Traduzidas , Filogenia , Análise de Sequência , Recombinação Genética
17.
Front Vet Sci ; 9: 1033107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570511

RESUMO

The family Parvoviridae comprises many major viral pathogens that can infect humans and multiple other species, causing severe diseases. However, knowledge of parvoviruses that infect equids is limited. In the present study, we found that three equine parvoviruses (EqPVs), namely, equine parvovirus-hepatitis (EqPV-H), equine parvovirus-cerebrospinal fluid (EqPV-CSF) and equine copivirus (EqCoPV) cocirculated among horses in China. We examined the prevalence of these three EqPVs in 225 horse serum samples in China and found EqPV-H, EqPV-CSF and EqCoPV viremia in 7.6% (17/225), 2.7% (6/225) and 2.2% of samples (5/225), respectively. We also obtained the complete genomes of one EqPV-H strain, six EqPV-CSF strains and one EqCoPV strain. After phylogenetic analysis of the EqPVs, we found that EqPV-CSF and EqCoPV may have evolved from the same ancestor. The EqPV-CSF strains (E111 and A27) and EqCoPV strain (F124) were genetically similar to foreign strains, but the EqPV-CSF strains (B48, E96, C61 and F146) comprised unique clades. This study determined the prevalence of three EqPVs in Chinese horses and analyzed the genetic characteristics of EqPVs prevalent strains in Chinese horse herds. Our data provide a theoretical basis for follow-up research on the prevention and control of EqPVs.

18.
Virol Sin ; 37(2): 223-228, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35537981

RESUMO

Bovine hepacivirus (BovHepV) is a novel virus that was recently discovered in Ghana and Germany in 2015. Until now, this virus has been identified in cattle population worldwide and is classified into subtypes A-G. To fully understand the epidemic situation and genetic characteristic of BovHepV in China, a total of 612 cattle serum samples were collected from 20 farms in seven provinces and municipality in China between 2018 and 2020 and were tested for the presence of BovHepV RNA via semi-nested PCR. The results demonstrated that 49 (8.0%) samples were BovHepV RNA-positive. It is noted that BovHepV infection in yak was confirmed for the first time. BovHepV was detected in all the seven provinces, with the positive rate ranging from 3.1% to 13.3%, which indicates a wide geographical distribution pattern of BovHepV in China. Sequencing results revealed that 5' UTR of the 49 field BovHepV strains have a nucleotide similarity of 96.3%-100% between each other and 93.9%-100% with previously reported BovHepV strains. In addition, genetic analysis identified five critical nucleotide sites in 5' UTR to distinguish different subtypes, which was further verified by genomic sequencing and nucleotide similarity analysis. All the 49 Chinese field BovHepV strains were classified into subtype G and this subtype is only determined in cattle in China currently. This study will provide insights for us to better understand the epidemiology and genetic diversity of BovHepV.


Assuntos
Hepacivirus , Nucleotídeos , Regiões 5' não Traduzidas , Animais , Bovinos , China/epidemiologia , Estudos Epidemiológicos , Variação Genética , Genótipo , Hepacivirus/genética , Filogenia
19.
Front Immunol ; 13: 827709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401540

RESUMO

African swine fever virus (ASFV) causes an acute, hemorrhagic, and highly contagious disease in domestic swine, leading to significant economic losses to the global porcine industry. Restriction factors of innate immunity play a critical in host antiviral action. However, function of swine restriction factors of innate immunity on ASFV has been seldomly investigated. In this study, we determined five homologues of swine interferon-induced transmembrane proteins (SwIFITM [named SwIFITM1a, -1b, -2, -3, and -5]), and we found that they all exhibit potent antiviral activity against ASFV. Expression profile analysis indicated that these SwIFITMs are constitutively expressed in most porcine tissues. Whether infected with ASFV or treated with swine interferon, the expression levels of SwIFITMs were induced in vitro. The subcellular localization of SwIFITMs was similar to that of their human homologues. SwIFITM1a and -1b localized to the plasma membrane, SwIFITM2 and -3 focused on the cytoplasm and the perinuclear region, while SwIFITM5 accumulated in the cell surface and cytoplasm. The overexpression of SwIFITM1a, -1b, -2, -3, or -5 could significantly inhibit ASFV replication in Vero cells, whereas knockdown of these genes could enhance ASFV replication in PAMs. We blocked the constitutive expression of endogenous IFITMs in Vero cells using a CRISPR-Cas9 system and then infected them with ASFV. The results indicated that the knockout of endogenous IFITMs could enhance ASFV replication. Finally, we expressed five SwIFITMs in knockout Vero cell lines and then challenged them with ASFV. The results showed that all of the SwIFITMs had a strong antiviral effect on ASFV. This research will further expand the understanding of the anti-ASFV activity of porcine IFITMs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Chlorocebus aethiops , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Suínos , Células Vero , Replicação Viral
20.
Life Sci ; 288: 119092, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737086

RESUMO

AIMS: Phenotypic switching of vascular smooth muscle cells (VSMCs) is essential for the formation of abdominal aortic aneurysms (AAAs). MicroRNA-23b (miR-23b) has recently been shown to play a vital role in maintaining the VSMC contractile phenotype; however, little is known about the role of miR-23b in the formation of AAAs. Here, we investigated whether miR-23b prevents AAA formation by inhibiting VSMC phenotypic switching. MATERIALS AND METHODS: We administered angiotensin II (Ang II, 1000 ng/kg/min) or vehicle to 10-12-week-old male apolipoprotein E knockout (ApoE-/-) or C57BL/6J mice via subcutaneous osmotic minipumps for 4 weeks. KEY FINDINGS: The expression of miR-23b was significantly reduced in the aorta during the early onset of AAA in angiotensin II-treated ApoE-/- mice and in human AAA samples. In vitro experiments showed that the suppression of SMC contractile marker gene expression induced by Ang II was accelerated by miR-23b inhibitors but inhibited by mimics. In vivo studies revealed that miR-23b deficiency in Ang II-treated C57BL/6J mice aggravated the formation of AAAs in these mice compared with control mice; the opposite results were observed in miR-23b-overexpressing mice. Mechanistically, miR-23b knockdown significantly increased the expression of the transcription factor forkhead box O4 (FoxO4) during VSMC phenotypic switching induced by Ang II. In addition, a luciferase reporter assay showed that FoxO4 is a target of miR-23b in VSMCs. SIGNIFICANCE: Our study revealed a pivotal role for miR-23b in protecting against aortic aneurysm formation by maintaining the VSMC contractile phenotype.


Assuntos
Angiotensina II/toxicidade , Aneurisma da Aorta Abdominal/prevenção & controle , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/genética , Miócitos de Músculo Liso/patologia , Animais , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Proteínas de Ciclo Celular/genética , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA