Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 625(7993): 157-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093016

RESUMO

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12-18-month-old Bangladeshi children with moderate acute malnutrition4. We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations.


Assuntos
Alimentos , Microbioma Gastrointestinal , Desnutrição , Polissacarídeos , Humanos , Lactente , Bactérias/genética , Bangladesh , Peso Corporal/genética , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Desnutrição/microbiologia , Metagenoma/genética , Polissacarídeos/metabolismo , Aumento de Peso
2.
N Engl J Med ; 384(16): 1517-1528, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33826814

RESUMO

BACKGROUND: More than 30 million children worldwide have moderate acute malnutrition. Current treatments have limited effectiveness, and much remains unknown about the pathogenesis of this condition. Children with moderate acute malnutrition have perturbed development of their gut microbiota. METHODS: In this study, we provided a microbiota-directed complementary food prototype (MDCF-2) or a ready-to-use supplementary food (RUSF) to 123 slum-dwelling Bangladeshi children with moderate acute malnutrition between the ages of 12 months and 18 months. The supplementation was given twice daily for 3 months, followed by 1 month of monitoring. We obtained weight-for-length, weight-for-age, and length-for-age z scores and mid-upper-arm circumference values at baseline and every 2 weeks during the intervention period and at 4 months. We compared the rate of change of these related phenotypes between baseline and 3 months and between baseline and 4 months. We also measured levels of 4977 proteins in plasma and 209 bacterial taxa in fecal samples. RESULTS: A total of 118 children (59 in each study group) completed the intervention. The rates of change in the weight-for-length and weight-for-age z scores are consistent with a benefit of MDCF-2 on growth over the course of the study, including the 1-month follow-up. Receipt of MDCF-2 was linked to the magnitude of change in levels of 70 plasma proteins and of 21 associated bacterial taxa that were positively correlated with the weight-for-length z score (P<0.001 for comparisons of both protein and bacterial taxa). These proteins included mediators of bone growth and neurodevelopment. CONCLUSIONS: These findings provide support for MDCF-2 as a dietary supplement for young children with moderate acute malnutrition and provide insight into mechanisms by which this targeted manipulation of microbiota components may be linked to growth. (Supported by the Bill and Melinda Gates Foundation and the National Institutes of Health; ClinicalTrials.gov number, NCT04015999.).


Assuntos
Suplementos Nutricionais , Alimentos Formulados , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição do Lactente , Desnutrição/dietoterapia , Antropometria , Bangladesh , Proteínas Sanguíneas/análise , Peso Corporal , Fezes/microbiologia , Feminino , Crescimento , Humanos , Lactente , Masculino , Desnutrição/microbiologia , Proteoma , Aumento de Peso
3.
Development ; 145(7)2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29540498

RESUMO

Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling mediated by Epidermal growth factor receptor (EGFR) and the Sevenless (Sev) receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye. Moreover, mir-279/996 mutants exhibit substantial numbers of ectopic photoreceptors, particularly of R7, and cone cell loss. These miRNAs restrict RTK signaling in the eye, since mir-279/996 nulls are dominantly suppressed by positive components of the EGFR pathway and enhanced by heterozygosity for an EGFR repressor. miR-279/996 limit photoreceptor recruitment by targeting multiple positive RTK/Ras signaling components that promote photoreceptor/R7 specification. Strikingly, deletion of mir-279/996 sufficiently derepresses RTK/Ras signaling so as to rescue a population of R7 cells in R7-specific RTK null mutants boss and sev, which otherwise completely lack this cell fate. Altogether, we reveal a rare setting of developmental cell specification that involves substantial miRNA control.


Assuntos
Drosophila/metabolismo , Olho/metabolismo , MicroRNAs/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Drosophila/embriologia , Proteínas de Drosophila/metabolismo , Olho/embriologia , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Organogênese/genética , Transdução de Sinais
4.
Development ; 143(13): 2389-97, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226322

RESUMO

The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Retroalimentação Fisiológica , Células Fotorreceptoras de Invertebrados/metabolismo , Ligação Proteica , Rodopsina/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 42(1): 97-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331458

RESUMO

PURPOSE: One of the interesting features of the amyloid tracer Pittsburgh compound B (PiB) is that it generates a signal in the white matter (WM) in both healthy subjects and cognitively impaired individuals. This characteristic gave rise to the possibility that PiB could be used to trace WM pathology. In a group of cognitively healthy elderly we examined PiB retention in normal-appearing WM (NAWM) and WM lesions (WML), one of the most common brain pathologies in aging. METHODS: We segmented WML and NAWM on fluid attenuation inversion recovery (FLAIR) images of 73 subjects (age 61.9 ± 10.0, 71 % women). PiB PET images were corrected for partial volume effects and coregistered to FLAIR images and WM masks. WML and NAWM PiB signals were then extracted. RESULTS: PiB retention in WML was lower than in NAWM (p < 0.001, 14.6 % reduction). This was true both for periventricular WML (p < 0.001, 17.8 % reduction) and deep WML (p = 0.001, 7.5 % reduction). CONCLUSION: PiB binding in WM is influenced by the presence of WML, which lower the signal. Our findings add to the growing evidence that PiB can depict WM pathology and should prompt further investigations into PiB binding targets in WM.


Assuntos
Compostos de Anilina , Encéfalo/diagnóstico por imagem , Placa Amiloide/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tiazóis , Substância Branca/diagnóstico por imagem , Idoso , Compostos de Anilina/farmacocinética , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Tiazóis/farmacocinética , Substância Branca/patologia
6.
Nat Microbiol ; 9(4): 922-937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503977

RESUMO

Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains. To test this correlation, here we use gnotobiotic mice colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains, with or without P. copri isolates closely matching the metagenome-assembled genomes. Combining gut metagenomics and metatranscriptomics with host single-nucleus RNA sequencing and gut metabolomic analyses, we identify a key role of P. copri in metabolizing MDCF-2 glycans and uncover its interactions with other microbes including Bifidobacterium infantis. P. copri-containing consortia mediated weight gain and modulated energy metabolism within intestinal epithelial cells. Our results reveal structure-function relationships between MDCF-2 and members of the gut microbiota of malnourished children with potential implications for future therapies.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Microbiota , Prevotella , Animais , Camundongos , Microbioma Gastrointestinal/genética , Aumento de Peso
7.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645712

RESUMO

Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes1-5. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period5. Bangladeshi children with moderate acute malnutrition (MAM) participating in a previously reported 3-month-long randomized controlled clinical study of one such formulation, MDCF-2, exhibited significantly improved weight gain compared to a commonly used nutritional intervention despite the lower caloric density of the MDCF6. Characterizing the 'metagenome assembled genomes' (MAGs) of bacterial strains present in the microbiomes of study participants revealed a significant correlation between accelerated ponderal growth and the expression by two Prevotella copri MAGs of metabolic pathways involved in processing of MDCF-2 glycans1. To provide a direct test of these relationships, we have now performed 'reverse translation' experiments using a gnotobiotic mouse model of mother-to-offspring microbiome transmission. Mice were colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains cultured from Bangladeshi infants/children in the study population, with or without P. copri isolates resembling the MAGs. By combining analyses of microbial community assembly, gene expression and processing of glycan constituents of MDCF-2 with single nucleus RNA-Seq and mass spectrometric analyses of the intestine, we establish a principal role for P. copri in mediating metabolism of MDCF-2 glycans, characterize its interactions with other consortium members including Bifidobacterium longum subsp. infantis, and demonstrate the effects of P. copri-containing consortia in mediating weight gain and modulating the activities of metabolic pathways involved in lipid, amino acid, carbohydrate plus other facets of energy metabolism within epithelial cells positioned at different locations in intestinal crypts and villi. Together, the results provide insights into structure/function relationships between MDCF-2 and members of the gut communities of malnourished children; they also have implications for developing future prebiotic, probiotic and/or synbiotic therapeutics for microbiome restoration in children with already manifest malnutrition, or who are at risk for this pervasive health challenge.

8.
medRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645824

RESUMO

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Designing effective microbiome-directed therapeutic foods to repair these perturbations requires knowledge about how food components interact with the microbiome to alter its expressed functions. Here we use biospecimens from a randomized, controlled trial of a microbiome-directed complementary food prototype (MDCF-2) that produced superior rates of weight gain compared to a conventional ready-to-use supplementary food (RUSF) in 12-18-month-old Bangladeshi children with moderate acute malnutrition (MAM)4. We reconstructed 1000 bacterial genomes (metagenome-assembled genomes, MAGs) present in their fecal microbiomes, identified 75 whose abundances were positively associated with weight gain (change in weight-for-length Z score, WLZ), characterized gene expression changes in these MAGs as a function of treatment type and WLZ response, and used mass spectrometry to quantify carbohydrate structures in MDCF-2 and feces. The results reveal treatment-induced changes in expression of carbohydrate metabolic pathways in WLZ-associated MAGs. Comparing participants consuming MDCF-2 versus RUSF, and MDCF-2-treated children in the upper versus lower quartiles of WLZ responses revealed that two Prevotella copri MAGs positively associated with WLZ were principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilization of its component glycans. Moreover, the predicted specificities of carbohydrate active enzymes expressed by polysaccharide utilization loci (PULs) in these two MAGs correlate with the (i) in vitro growth of Bangladeshi P. copri strains, possessing differing degrees of PUL and overall genomic content similarity to these MAGs, cultured in defined medium containing different purified glycans representative of those in MDCF-2, and (ii) levels of carbohydrate structures identified in feces from clinical trial participants. In the accompanying paper5, we use a gnotobiotic mouse model colonized with age- and WLZ-associated bacterial taxa cultured from this study population, and fed diets resembling those consumed by study participants, to directly test the relationship between P. copri, MDCF-2 glycan metabolism, host ponderal growth responses, and intestinal gene expression and metabolism. The ability to identify bioactive glycan structures in MDCFs that are metabolized by growth-associated bacterial taxa will help guide recommendations about use of this MDCF for children with acute malnutrition representing different geographic locales and ages, as well as enable development of bioequivalent, or more efficacious, formulations composed of culturally acceptable and affordable ingredients.

9.
Elife ; 62017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29251595

RESUMO

Each individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic on/off expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in ss that lowers the ratio of SsON to SsOFF cells. This change in photoreceptor fates shifts the innate color preference of flies from green to blue. The genetic variant increases the binding affinity for Klumpfuss (Klu), a zinc finger transcriptional repressor that regulates ss expression. Klu is expressed at intermediate levels to determine the normal ratio of SsON to SsOFF cells. Thus, binding site affinity and transcription factor levels are finely tuned to regulate stochastic expression, setting the ratio of alternative fates and ultimately determining color preference.


Assuntos
Comportamento Animal , Cor , Drosophila/fisiologia , Células Fotorreceptoras/fisiologia , Percepção Visual , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Mutagênese Insercional , Ligação Proteica , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA