Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921011

RESUMO

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

2.
Mol Biol Rep ; 51(1): 365, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409611

RESUMO

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.


Assuntos
MicroRNAs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/metabolismo , Vasos Coronários/metabolismo , Estudo de Associação Genômica Ampla , Movimento Celular , Lipoproteínas LDL/farmacologia , Células Cultivadas , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , MicroRNAs/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Moléculas de Adesão Celular/genética
3.
Phytother Res ; 38(6): 3240-3267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739454

RESUMO

Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Polifenóis , RNA Longo não Codificante , RNA Longo não Codificante/genética , Polifenóis/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Animais
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731861

RESUMO

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Assuntos
Armadilhas Extracelulares , Lactoferrina , Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologia
5.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615033

RESUMO

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Assuntos
Movimento Celular
6.
Exp Cell Res ; 401(1): 112521, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609534

RESUMO

Oxygen therapy is a common treatment in neonatal intensive care units, but long-term continuous hyperoxia ventilation may induce acute lung injury (ALI). Gasdermin D (GSDMD)-mediated pyroptosis participates in various diseases including ALI, but the role of GSDMD in hyperoxia-induced ALI is yet understood. Here, we showed a significant increase in GSDMD after exposure to high oxygen. To elucidate the molecular mechanisms involved in GSDMD regulation, we identified the core promoter of GSDMD, -98 ~ -12 bp relative to the transcriptional start site (TSS). The results of mutational analysis, overexpression or siRNA interference, EMSA and ChIP demonstrated that E2F4 and TFAP2A positively regulate the transcriptional activity of the GSDMD by binding to its promoter. However, only TFAP2A showed a regulatory effect on the expression of GSDMD. Moreover, TFAP2A was increased in the lung tissues of rats exposed to hyperoxia and showed a strong linear correlation with GSDMD. Our results indicated that TFAP2A positively regulates the GSDMD expression via binding to the promoter region of GSDMD.


Assuntos
Lesão Pulmonar Aguda/genética , Fator de Transcrição E2F4/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Oxigênio/efeitos adversos , Proteínas de Ligação a Fosfato/genética , Fator de Transcrição AP-2/genética , Células A549 , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Animais Recém-Nascidos , Hipóxia Celular/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Unidades de Terapia Intensiva Neonatal , Oxigênio/uso terapêutico , Regiões Promotoras Genéticas/genética , Piroptose/genética , Ratos , Sítio de Iniciação de Transcrição
7.
Exp Cell Res ; 404(1): 112618, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965401

RESUMO

Androgenetic alopecia (AGA) is the most common type of hair loss dysfunction. Secreted frizzled related protein 1 (SFRP1) is found to be associated with hair loss, but its role in AGA and the regulation mechanism of its transcription level is unclear. The aim of our study is to explore the expression of SFRP1 in AGA samples and its transcriptional mechanism. Male frontal and occipital scalp hair follicles from AGA patients were collected, and human dermal papilla cells (DPCs) were isolated and cultured. SFRP1 gene was cloned and constructed into recombinant plasmids to perform dual-luciferase reporter assay. Transcription factor binding sites were predicted through the Jaspar website and further confirmed by the chromatin immunoprecipitation (ChIP) assay. Expression of genes in DPCs was determined by immunofluorescence (IF) staining, quantitative real-time PCR (qRT-PCR) and western blotting. Our findings showed that SFRP1 was highly expressed in DPCs of AGA patients. The core promoter region of SFRP1 was from -100 to +50 bp and was found to be positively regulated by forkhead box C1 (FOXC1), a transcription factor related to hair growth, both at mRNA and protein level in DPCs. Our study suggests that FOXC1 plays an important role in regulating SFRP1 transcription, which may provide new insights into the development of therapeutic strategies for the treatment of AGA.


Assuntos
Alopecia/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Alopecia/tratamento farmacológico , Alopecia/genética , Derme/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Fatores de Transcrição/metabolismo
8.
Foodborne Pathog Dis ; 19(1): 36-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591704

RESUMO

Enterohemorrhagic Escherichia coli are an important pathogen causing food poisoning. The rapid detection of viable E. coli O157 in vegetables and fruits at single-cell level is critical because of the low infective dose of this pathogen. In this study, an immunomagnetic flow cytometry (IMFC)-based method was developed to detect E. coli O157 in lettuce and strawberries inoculated with 1 CFU/25 g. This method developed immunomagnetic (IM)-beads to capture E. coli O157 cells. The pre-enrichment of E. coli O157 and IM-bead separation rapidly increased the concentration of cells to a detectable range for flow cytometry. Compared with the plate-based method, the diagnostic sensitivity and specificity of the IMFC-based method were 100% in 166 samples, including 100 artificially contaminated samples, 60 retail samples, and six O157-positive samples for proficiency testing. The developed IMFC-based method was found to be effective in detecting E. coli O157 at single-cell level in 25 g of lettuce or strawberry with relatively shorter associated time to results of 5.7 h. Therefore, the IMFC-based method could improve detection efficiency and also make early warnings in a short time.


Assuntos
Escherichia coli O157 , Fragaria , Contagem de Colônia Microbiana , Citometria de Fluxo , Microbiologia de Alimentos , Separação Imunomagnética , Lactuca
9.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499451

RESUMO

Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.


Assuntos
Moléculas de Adesão de Célula Nervosa , Sialiltransferases , Animais , Moléculas de Adesão de Célula Nervosa/metabolismo , Sialiltransferases/metabolismo , Ácidos Siálicos/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos , Mamíferos/metabolismo
10.
J Stroke Cerebrovasc Dis ; 31(7): 106446, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35512466

RESUMO

OBJECTIVES: The aim of the randomized, double-blind, sham-controlled trial was to explore the efficacy and safety of HF-rPMS synchronosly applied to the axilla (stimulating the brachial plexus) and the popliteal fossa (stimulating the tibial nerve and common peroneal nerve) in patients with intracerebral hemorrhage on rehabilitation of motor functions. MATERIALS AND METHODS: Patients with intracerebral haemorrhage in the early period were recruited and randomly assigned to the HF-rPMS group or the sham rPMS group. The two synchrous coils of magnetic stimulation in the two groups were respectively applied to the axilla and the popliteal fossa of the affected limb. But the sham group received the ineffective rPMS and only heard the sound as occured in the HF-rPMS group. Clinical outcomes included the change of Fugl-Meyer Assessment (FMA) scale and Medical Research Council (MRC) scale before and after HF-rPMS. RESULTS: Of 76 eligible patients, 30 were included and only 26 patients completed this study. The diferences on the improvement of the upper extremity FMA (P=0.012), the lower extremity FMA (P=0.001), the proximal MRC of upper extremity (p = 0.043), the proximal MRC of lower extremity (p= 0.004) and the distal MRC scores of lower extremity (p= 0.008) between the the HF-rPMS group and sham rPMS group were statistically signifcant. CONCLUSIONS: Synchrous HF-rPMS intervention at the axilla and the popliteal fossa significantly improved motor function and proximal muscle strength of upper and lower limb of patients in acute or early subacute phase of intracerebral hemorrhage.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/terapia , Humanos , Fenômenos Magnéticos , Recuperação de Função Fisiológica/fisiologia , Estimulação Magnética Transcraniana , Resultado do Tratamento , Extremidade Superior
11.
J Cell Mol Med ; 25(10): 4786-4799, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33745232

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by infection, resulting in organ dysfunction. Sepsis-induced acute kidney injury (AKI) is one of the most common potential complications. Increasing reports have shown that M1 and M2 macrophages both take part in the progress of AKI by influencing the level of inflammatory factors and the cell death, including pyroptosis. However, whether M1 and M2 macrophages regulate AKI by secreting exosome remains unknown. In the present study, we isolated the exosomes from M1 and M2 macrophages and used Western blot and enzyme-linked immunosorbent assay (ELISA) to investigate the effect of M1 and M2 exosomes on cell pyroptosis. miRNA sequencing was used to identify the different miRNA in M1 and M2 exosomes. Luciferase reporter assay was used to verify the target gene of miRNA. We confirmed that exosomes excreted by macrophages regulated cell pyroptosis in vitro by using Western blot and ELISA. miRNA sequencing revealed the differentially expressed level of miRNAs in M1 and M2 exosomes, among which miR-93-5p was involved in the regulation of pyroptosis. By using bioinformatics predictions and luciferase reporter assay, we found that thioredoxin-interacting protein (TXNIP) was a direct target of miR-93-5p. Further in vitro and in vivo experiments indicated that exosomal miR-93-5p regulated the TXNIP directly to influence the pyroptosis in renal epithelial cells, which explained the functional difference between different phenotypes of macrophages. This study might provide new targets for the treatment of sepsis-induced AKI.


Assuntos
Injúria Renal Aguda/patologia , Exossomos/patologia , Macrófagos/patologia , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Sepse/complicações , Tiorredoxinas/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Exossomos/genética , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Tiorredoxinas/genética
12.
Clin Lab ; 67(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258980

RESUMO

BACKGROUND: The false reactivity results of nucleic acid screening reagents have been reported in China and abroad. To identify false reactivity, effectively protect the rights of blood donors, and cherish limited blood resources, many countries study the methods of re-entry of NAT reactive blood donors. METHODS: ELISA non-reactive and NAT-reactive donors who donated blood in 2012 - 2017 were selected, and informed consent was obtained. The collected blood samples were tested by ELISA and NAT. Then, the samples were tested by ECLA for HBsAg, HBeAg, anti-HBs, anti-HBc, anti-HBe, anti-HCV, and anti-HIV. RESULTS: Forty-two donors were called back and tested: 15 of them were ELISA non-reactive/NAT-reactive, and 27 of them were ELISA non-reactive/NAT non-reactive. The ECLA results indicated that 90.5% ELISA non-reactive/NAT non-reactive donors were anti-HBc-reactive and/or anti-HBe-reactive (21 cases anti-HBc/anti-HBe-reactive, 17 cases anti-HBe-reactive). After 6 mouths, anti-HBc-reactive or anti-HBe-reactive donors were also anti-HBc-reactive and/or anti-HBe-reactive, and these donors were deferred permanently. Four cases that were non-reactive to all tested results may be eligible for re-entry. CONCLUSIONS: In view of blood safety, it is important to establish a set of safety criteria to allow re-entry of ELISA non-reactive/NAT-reactive blood donors.


Assuntos
Doadores de Sangue , Vírus da Hepatite B , China , Antígenos de Superfície da Hepatite B , Humanos
13.
Foodborne Pathog Dis ; 18(5): 346-353, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667125

RESUMO

A flow cytometry (FCM)-based method was developed for the faster detection of Staphylococcus aureus in milk and milk powder. Viable S. aureus cells were recognized by highly selective, fluorescently labeled antibodies and Propidium Iodide, and then analyzed by FCM. Using a 5-h pre-enrichment period, the method could detect low numbers of S. aureus cells in 6 h, with a limit of detection of 7.50 cells/mL in milk and 8.30 cells/g in milk powder. The established method was compared with the plate-based method using 75 ultra-high-temperature-treated milk samples, 25 pasteurized milk samples, 66 raw milk samples, and 123 milk powder samples. The two methods yielded similar results for the detection of the pathogen in all sample types. The FCM-based method allows effective and faster monitoring of S. aureus contamination and can be applied to the rapid detection of microorganisms in milk and dairy products.


Assuntos
Citometria de Fluxo/métodos , Microbiologia de Alimentos/métodos , Leite/microbiologia , Staphylococcus aureus/isolamento & purificação , Fatores de Tempo , Animais , Pós/análise
14.
J Cell Mol Med ; 24(18): 10478-10492, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32812343

RESUMO

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm infants characterized by increased alveolarization and inflammation. Premature exposure to hyperoxia is believed to be a key contributor to the pathogenesis of BPD. No effective preventive or therapeutic agents have been created. Stimulator of interferon gene (STING) is associated with inflammation and apoptosis in various lung diseases. Long non-coding RNA MALAT1 has been reported to be involved in BPD. However, how MALAT1 regulates STING expression remains unknown. In this study, we assessed that STING and MALAT1 were up-regulated in the lung tissue from BPD neonates, hyperoxia-based rat models and lung epithelial cell lines. Then, using the flow cytometry and cell proliferation assay, we found that down-regulating of STING or MALAT1 inhibited the apoptosis and promoted the proliferation of hyperoxia-treated cells. Subsequently, qRT-PCR, Western blotting and dual-luciferase reporter assays showed that suppressing MALAT1 decreased the expression and promoter activity of STING. Moreover, transcription factor CREB showed its regulatory role in the transcription of STING via a chromatin immunoprecipitation. In conclusion, MALAT1 interacts with CREB to regulate STING transcription in BPD neonates. STING, CREB and MALAT1 may be promising therapeutic targets in the prevention and treatment of BPD.


Assuntos
Displasia Broncopulmonar/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Proteínas de Membrana/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Animais , Apoptose/genética , Displasia Broncopulmonar/sangue , Linhagem Celular , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Inativação Gênica , Humanos , Hiperóxia/genética , Recém-Nascido , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/sangue , Modelos Biológicos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , Ratos , Regulação para Cima/genética
15.
Mol Biol Rep ; 47(11): 8419-8427, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33033902

RESUMO

AarF domain containing kinase 4 (ADCK4) is identified as a candidate gene associated with hereditary nephrotic syndrome (NS). Kruppel-like factor 5 (KLF5) is reported to promote podocyte survival by blocking the ERK/p38 MAPK pathways. Both ADCK4 and KLF5 are involved in the occurrence and development of podocyte disease, but their interaction remains unclear. Firstly, we found that the mRNA levels of ADCK4 and KLF5 decreased in NS patients, and both levels showed an obvious linear relationship. Secondly, we cloned the ADCK4 promoter region and examined its promoter activity in Hela, A549, and HEK 293 cell lines. Deletion analysis showed that the region - 116/- 4 relative to the transcriptional start site (TSS) was the core region of ADCK4 promoter. Thirdly, mutation analysis showed that putative binding sites for KLF5 contributed to the ADCK4 promoter activity. In HEK293 cells, we found that KLF5 upregulated the mRNA and protein levels of ADCK4. Finally, our chromatin immunoprecipitation assay found that KLF5 could bind to the specific region of ADCK4 promoter. These results showed that KLF5 can positively regulate the transcriptional activity of ADCK4.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Síndrome Nefrótica/genética , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Células A549 , Criança , Pré-Escolar , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Podócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Regulação para Cima
16.
Med Sci Monit ; 26: e922662, 2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32532951

RESUMO

BACKGROUND The aim of this study was to investigate the clinical features and prognostic factors of childhood acute megakaryoblastic leukemia (AMKL). MATERIAL AND METHODS The data of 27 cases of childhood AMKL admitted from November 2009 to July 2018 were retrospectively analyzed. The survival analysis and prognostic factors were analyzed by Kaplan-Meier method. RESULTS The median follow-up time was 26.4 months in 27 cases, and the complete response rate was 92.31% after 2 chemotherapy courses. Eight patients underwent bone marrow transplantation after 3-6 courses. Five patients died after transplantation, 4 of whom died due to recurrence after transplantation. Of the 27 patients, 10 developed recurrence (37.04%), and 8/10 had recurrence within 1 year. The 3-year overall survival rate and disease-free survival rates were (47±12)% and (36±14)%, respectively. Of the 27 AMKL cases, the 3 with Down syndrome (DS-AMKL) all survived after treatment, and the 3-year overall survival rate was 100%. However, of the other 24 AMKL patients without Down syndrome (non-DS-AMKL), 6 died and 6 abandoned treatment, and the 3-year overall survival rate was only 50%. Univariate analysis showed that 3-year overall survival rate was not correlated to gender, age, number of newly diagnosed white blood cells, karyotype, remission after 2 courses of treatment, and transplant after 3 courses of treatment of childhood AMKL cases. Nevertheless, recurrence and remission after 2 courses of treatment were significantly correlated with 3-year overall survival rate. CONCLUSIONS Children with non-DS-AMKL have a high degree of malignancy and are prone to early recurrence with a poor prognosis, whereas the prognosis of DS-AMKL is relatively good. Recurrence after treatment and remission after 2 courses of treatment are important factors influencing the prognosis of childhood AMKL. Recurrence after transplantation is the leading cause of death in transplantation patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Medula Óssea , Leucemia Megacarioblástica Aguda/terapia , Anemia/etiologia , Pré-Escolar , Síndrome de Down/complicações , Feminino , Febre/etiologia , Hemorragia/etiologia , Hepatomegalia/etiologia , Humanos , Lactente , Estimativa de Kaplan-Meier , Cariótipo , Leucemia Megacarioblástica Aguda/complicações , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/mortalidade , Masculino , Recidiva Local de Neoplasia , Prognóstico , Esplenomegalia/etiologia
17.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111064

RESUMO

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Imageamento por Ressonância Magnética/métodos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerização , Conformação Proteica , Domínios Proteicos
18.
J Cell Biochem ; 120(7): 11366-11374, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30756418

RESUMO

The expression changes of CD2-associated protein (CD2AP) can lead to kidney diseases with proteinuria, including nephrotic syndrome (NS). A recent study reported that miRNAs may be important transcriptional regulators. In this study, we found increased expression of miR-939-5p and decreased expression of CD2AP in the peripheral blood of patients with NS. However, miR-939-5p did not show a regulatory effect on the 3'-untranslated region of CD2AP. The expression levels of specific protein 1 and adenovirus E2 promoter-binding factor 1, important transcription regulators in the promoter region of CD2AP, were also not affected by microRNA (miR)-939-5p. We confirmed that miR-939-5p is in the nucleus by fluorescent in situ hybridization and cytoplasmic separation polymerase chain reaction. The promoter plasmid and miR-939-5p were cotransfected into HEK-293 cells, and the luciferase reporter gene assay was used to analyze the promoter activity. We found that miR-939-5p binds to a specific sequence in the CD2AP promoter. miR-939-5p was confirmed to reduce the recruitment of RNA polymerase II to the CD2AP promoter region by chromatin immunoprecipitation. These findings improve our understanding of the mechanism of miR-939-5p in NS and provide potential molecular therapeutic targets for NS.

19.
Exp Cell Res ; 370(2): 498-505, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009792

RESUMO

Orosomucoid 1-like protein 3 (ORMDL3) is an asthma candidate gene associated with virus-triggered recurrent wheeze. Stimulator of interferon gene (STING) controls TLR-independent cytosolic responses to viruses. However, the association of STING with ORMDL3 is unclear. Here, we have shown that ORMDL3 expression shows a linear correlation with STING in recurrent wheeze patients. In elucidating the molecular mechanisms of the ORMDL3-STING relationship, we found that STING promoted the transcriptional activity of ORMDL3, which was significantly associated with increased levels of interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 6 (STAT6). Further study showed that via activation of TANK binding kinase 1 (TBK1), STING enhanced the phosphorylation and binding of IRF3 and STAT6, which upregulated ORMDL3 by binding to the promoter. Our results showed that STING positively regulated ORMDL3 through the TBK1-IRF3-STAT6 complex.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT6/metabolismo , Adulto , Idoso , Linhagem Celular , Citosol/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia
20.
Exp Cell Res ; 372(1): 43-51, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217493

RESUMO

Orosomucoid like-3 (ORMDL3) has been identified to be associated with the development of asthma according to previous studies. However, the definite role of ORMDL3 in the pathogenesis of asthma remains unclear. In this study, we found ORMDL3 was highly expressed in PBMC specimens from childhood asthma patients. Cytokines production and p-ERK/MMP-9 pathway expression was also increased in childhood asthma patients compared with controls. In addition, ORMDL3 overexpression induced IL-6 and IL-8 release and activated p-ERK/MMP-9 pathway in vitro. Increased ORMDL3 expression was observed after treated with 5-Aza-CdR. 5-Aza-CdR decreased the percentage of the CpG island in the ORMDL3 promoter region and increased its promoter activity. In addition, 5-Aza-CdR significantly increased IL-6 and IL-8 levels in NHBE cells while there was no obvious alteration after knocking down ORMDL3. Knockdown of ORMDL3 also significantly decreased the expression of p-ERK/MMP-9 pathway in the presence or absence of 5-Aza-CdR. In conclusion, our study provided novel evidence for the association between ORMDL3 and asthma-associated cytokines. Moreover, DNA methylation plays an important role in ORMDL3-mediated increased IL-6 and IL-8 levels and p-ERK/MMP-9 pathway expression.


Assuntos
Asma/genética , Epigênese Genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Adolescente , Asma/metabolismo , Asma/patologia , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Transformada , Criança , Ilhas de CpG , Decitabina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Metilação , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA