Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289960

RESUMO

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Assuntos
Doenças Autoimunes , Mieloma Múltiplo , Doenças Musculares , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B , Doenças Neuroinflamatórias , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Autoanticorpos , Doenças Musculares/terapia , Análise de Célula Única , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577069

RESUMO

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Assuntos
Doenças Desmielinizantes , Microglia , Camundongos , Animais , Microglia/metabolismo , Ácido Linoleico/metabolismo , Autofagia , Doenças Desmielinizantes/metabolismo , Regeneração
3.
Hum Genomics ; 18(1): 76, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961447

RESUMO

BACKGROUND: Lipid-lowering drugs are widely used among the elderly, with some studies suggesting links to muscle-related symptoms. However, the causality remains uncertain. METHODS: Using the Mendelian randomization (MR) approach, we assessed the causal effects of genetically proxied reduced low-density lipoprotein cholesterol (LDL-C) through inhibitions of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-like 1 (NPC1L1) on sarcopenia-related traits, including low hand grip strength, appendicular lean mass, and usual walking pace. A meta-analysis was conducted to combine the causal estimates from different consortiums. RESULTS: Using LDL-C pooled data predominantly from UK Biobank, genetically proxied inhibition of HMGCR was associated with higher appendicular lean mass (beta = 0.087, P = 7.56 × 10- 5) and slower walking pace (OR = 0.918, P = 6.06 × 10- 9). In contrast, inhibition of PCSK9 may reduce appendicular lean mass (beta = -0.050, P = 1.40 × 10- 3), while inhibition of NPC1L1 showed no causal impact on sarcopenia-related traits. These results were validated using LDL-C data from Global Lipids Genetics Consortium, indicating that HMGCR inhibition may increase appendicular lean mass (beta = 0.066, P = 2.17 × 10- 3) and decelerate walking pace (OR = 0.932, P = 1.43 × 10- 6), whereas PCSK9 inhibition could decrease appendicular lean mass (beta = -0.048, P = 1.69 × 10- 6). Meta-analysis further supported the robustness of these causal associations. CONCLUSIONS: Genetically proxied HMGCR inhibition may increase muscle mass but compromise muscle function, PCSK9 inhibition could result in reduced muscle mass, while NPC1L1 inhibition is not associated with sarcopenia-related traits and this class of drugs may serve as viable alternatives to sarcopenia individuals or those at an elevated risk.


Assuntos
Hidroximetilglutaril-CoA Redutases , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9 , Sarcopenia , Humanos , Sarcopenia/genética , Pró-Proteína Convertase 9/genética , Hidroximetilglutaril-CoA Redutases/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Proteínas de Membrana Transportadoras/genética , Hipolipemiantes/uso terapêutico , Hipolipemiantes/efeitos adversos , Proteínas de Membrana/genética , Masculino , Feminino , Idoso , Força da Mão
4.
Brain ; 147(1): 163-176, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740498

RESUMO

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Neuromielite Óptica , Animais , Camundongos , Humanos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Doenças Neuroinflamatórias , Biomarcadores/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-38805089

RESUMO

PURPOSE: This study aimed to comprehensively explore the different metabolic connectivity topological changes in MTLE and NTLE, as well as their association with surgical outcomes. METHODS: This study enrolled a cohort of patients with intractable MTLE and NTLE. Each individual's metabolic connectome, as determined by Kullback-Leibler divergence similarity estimation for the [18F]FDG PET image, was employed to conduct a comprehensive analysis of the cerebral metabolic network. Alterations in network connectivity were assessed by extracting and evaluating the strength of edge and weighted connectivity. By utilizing these two connectivity strength metrics with the cerebellum, we explored the network properties of connectivity and its association with prognosis in surgical patients. RESULTS: Both MTLE and NTLE patients exhibited substantial alterations in the connectivity of the metabolic network at the edge and nodal levels (p < 0.01, FDR corrected). The key disparity between MTLE and NTLE was observed in the cerebellum. In MTLE, there was a predominance of increased connectivity strength in the cerebellum. Whereas, a decrease in cerebellar connectivity was identified in NTLE. It was found that in MTLE, higher edge connectivity and weighted connectivity strength in the contralateral cerebellar hemisphere correlated with improved surgical outcomes. Conversely, in NTLE, a higher edge metabolic connectivity strength in the ipsilateral cerebellar hemisphere suggested a worse surgical prognosis. CONCLUSION: The cerebellum exhibits distinct topological characteristics in the metabolic networks between MTLE and NTLE. The hyper- or hypo-metabolic connectivity in the cerebellum may be a prognostic biomarker of surgical prognosis, which might aid in therapeutic decision-making for TLE individuals.

6.
Brain Behav Immun ; 119: 416-430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636563

RESUMO

The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Lipoproteínas LDL , Microglia , Substância Branca , Microglia/metabolismo , Animais , Substância Branca/metabolismo , Substância Branca/patologia , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Fagocitose/fisiologia , Bainha de Mielina/metabolismo
7.
J Neurochem ; 167(4): 489-504, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823326

RESUMO

Chronic cerebral hypoperfusion leads to sustained demyelination and a unique response of microglia. Triggering receptor expressed on myeloid cells 2 (Trem2), which is expressed exclusively on microglia in the central nervous system (CNS), plays an essential role in microglial response in various CNS disorders. However, the specific role of Trem2 in chronic cerebral hypoperfusion has not been elucidated. In this study, we investigated the specific role of Trem2 in a mouse model of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis (BCAS). Our results showed that chronic hypoperfusion induced white matter demyelination, microglial phagocytosis, and activation of the microglial autophagic-lysosomal pathway, accompanied by an increase in Trem2 expression. After Trem2 knockout, we observed attenuation of white matter lesions and microglial response. Trem2 deficiency also suppressed microglial phagocytosis and relieved activation of the autophagic-lysosomal pathway, leading to microglial polarization towards anti-inflammatory and homeostatic phenotypes. Furthermore, Trem2 knockout inhibited lipid droplet accumulation in microglia in vitro. Collectively, these findings suggest that Trem2 deficiency ameliorated microglial phagocytosis and autophagic-lysosomal activation in hypoperfusion-induced white matter injury, and could be a promising target for the treatment of chronic cerebral hypoperfusion.


Assuntos
Isquemia Encefálica , Doenças Desmielinizantes , Substância Branca , Animais , Camundongos , Substância Branca/patologia , Microglia/metabolismo , Fagocitose , Isquemia Encefálica/metabolismo , Lisossomos/metabolismo , Doenças Desmielinizantes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
8.
J Neuroinflammation ; 20(1): 89, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013543

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are activated and play a pivotal role in response to tissue injury. Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by microglia and promotes microglial activation, survival and phagocytosis. Here, we identify a critical role for TREM2 in microglial activation and function during AQP4-IgG and complement-induced demyelination. TREM2-deficient mice had more severe tissue damage and neurological impairment, as well as fewer oligodendrocytes with suppressed proliferation and maturation. The number of microglia clustering in NMOSD lesions and their proliferation were reduced in TREM2-deficient mice. Moreover, morphology analysis and expression of classic markers showed compromised activation of microglia in TREM2-deficient mice, which was accompanied by suppressed phagocytosis and degradation of myelin debris by microglia. These results overall indicate that TREM2 is a key regulator of microglial activation and exert neuroprotective effects in NMOSD demyelination.


Assuntos
Glicoproteínas de Membrana , Microglia , Neuromielite Óptica , Receptores Imunológicos , Animais , Camundongos , Sistema Nervoso Central , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Neuromielite Óptica/metabolismo , Fagocitose/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
9.
J Neuroinflammation ; 19(1): 79, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382840

RESUMO

BACKGROUND: Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been described as a biomarker for microglial activation, which were observed increased in a variety of neurological disorders. OBJECTIVE: Our objective was to explore whether genetically determined CSF sTREM2 levels are causally associated with different neurological diseases by conducting a two-sample Mendelian randomization (MR) study. METHODS: Single nucleotide polymorphisms significantly associated with CSF sTREM2 levels were selected as instrumental variables to estimate the causal effects on clinically common neurological diseases, including stroke, Alzheimer's diseases, Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy and their subtypes. Summary-level statistics of both exposure and outcomes were applied in an MR framework. RESULTS: Genetically predicted per 1 pg/dL increase of CSF sTREM2 levels was associated with higher risk of multiple sclerosis (OR = 1.038, 95%CI = 1.014-1.064, p = 0.002). Null association was found in risk of other included neurological disorders. CONCLUSIONS: These findings provide support for a potential causal relationship between elevated CSF sTREM2 levels and higher risk of multiple sclerosis.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Doenças do Sistema Nervoso , Receptores Imunológicos , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos , Glicoproteínas de Membrana/líquido cefalorraquidiano , Análise da Randomização Mendeliana , Doenças do Sistema Nervoso/genética
10.
Epilepsia ; 63(12): 3192-3203, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196770

RESUMO

OBJECTIVE: Cortical tremor/myoclonus is the hallmark feature of benign adult familial myoclonic epilepsy (BAFME), the mechanism of which remains elusive. A hypothesis is that a defective control in the preexisting cerebellar-motor loop drives cortical tremor. Meanwhile, the basal ganglia system might also participate in BAFME. This study aimed to discover the structural basis of cortical tremor/myoclonus in BAFME. METHODS: Nineteen patients with BAFME type 1 (BAFME1) and 30 matched healthy controls underwent T1-weighted and diffusion tensor imaging scans. FreeSurfer and spatially unbiased infratentorial template (SUIT) toolboxes were utilized to assess the motor cortex and the cerebellum. Probabilistic tractography was generated for two fibers to test the hypothesis: the dentato-thalamo-(M1) (primary motor cortex) and globus pallidus internus (GPi)-thalamic projections. Average fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) of each tract were extracted. RESULTS: Cerebellar atrophy and dentate nucleus alteration were observed in the patients. In addition, patients with BAFME1 exhibited reduced AD and FA in the left and right dentato-thalamo-M1 nondecussating fibers, respectively false discovery rate (FDR) correction q < .05. Cerebellar projections showed negative correlations with somatosensory-evoked potential P25-N33 amplitude and were independent of disease duration and medication. BAFME1 patients also had increased FA and decreased MD in the left GPi-thalamic projection. Higher FA and lower RD in the right GPi-thalamic projection were also observed (FDR q < .05). SIGNIFICANCE: The present findings support the hypothesis that the cerebello-thalamo-M1 loop might be the structural basis of cortical tremor in BAFME1. The basal ganglia system also participates in BAFME1 and probably serves a regulatory role.


Assuntos
Imagem de Tensor de Difusão , Epilepsias Mioclônicas , Humanos , Adulto , Epilepsias Mioclônicas/diagnóstico por imagem
11.
Arch Gynecol Obstet ; 305(1): 77-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34351473

RESUMO

PURPOSE: To determine the role of vaginal microbiota in the efficacy of cervical cerclage in obstetric outcomes of twin pregnancies. METHODS: This retrospective study enrolled 68 twin pregnant women diagnosed with cervical incompetence (CIC) and 68 twin pregnancies without CIC. The CIC group was further divided into two subgroups: cerclage group (n = 51) and non-cerclage group (n = 17), according to whether cervical cerclage was performed in the second trimester. Data of vaginal microbiota and obstetric outcomes were collected and compared. RESULTS: Cervical incompetence had harmful effect on both pregnancy outcomes and vaginal microecology, characterized by earlier gestational week at delivery (30.3 ± 5.6 vs 35.6 ± 1.1, P < 0.001), a lower birth weight of newborns (OR 0.40; 95% CI 0.22-0.74), a higher vaginal pH value (OR 0.11; 95% CI 0.04-0.30) and a lower abundance of Lactobacillus (OR 0.34; 95% CI 0.17-0.70). In addition, compared with the vaginal microbiota after cerclage, less normal diversity of bacterial flora (OR 0.35; 95% CI 0.12-1.01), less Lactobacillus (OR 0.40; 95% CI 0.18-0.91) and more Gardnerella vaginalis (OR 18.92; 95% CI 2.38-150.35) appeared before cerclage. Besides, the unhealthy vaginal environment also had an unfavorable influence on the neonatal outcomes, increased neonatal mortality rate was observed in the group of vaginal pH > 4.5 (P < 0.05). Fortunately, compared with the non-cerclage group, the cerclage group had a longer interval from diagnosis to delivery (≥ 8 weeks) and more of the newborns' birth weight were not less than 1500 g (P < 0.05). CONCLUSION: A healthy vaginal environment is essential to improve the obstetric outcome for twin pregnancies with cervical cerclage.


Assuntos
Cerclagem Cervical , Microbiota , Nascimento Prematuro , Incompetência do Colo do Útero , Feminino , Humanos , Recém-Nascido , Gravidez , Resultado da Gravidez , Gravidez de Gêmeos , Nascimento Prematuro/prevenção & controle , Estudos Retrospectivos , Incompetência do Colo do Útero/cirurgia
12.
Neurobiol Dis ; 152: 105290, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556540

RESUMO

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.


Assuntos
Adaptação Fisiológica/fisiologia , Reprogramação Celular/fisiologia , Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Animais , Sistema Nervoso Central/imunologia , Humanos , Metaboloma , Microglia/imunologia , Fenótipo
13.
Cell Mol Neurobiol ; 41(2): 353-364, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32342246

RESUMO

Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia , Cloridrato de Fingolimode/farmacologia , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição STAT1/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Inflamação/patologia , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Modelos Biológicos , Fenótipo , Transdução de Sinais/efeitos dos fármacos
14.
J Neuroinflammation ; 17(1): 333, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158440

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated demyelinated disease of the central nervous system. Activation of microglia is involved in the pathogenesis of myelin loss. OBJECTIVE: This study is focused on the role of Hv1 in regulating demyelination and microglial activation through reactive oxygen species (ROS) production after lysophosphatidylcholine (LPC)-mediated demyelination. We also explored autophagy in this process. METHODS: A model of demyelination using two-point LPC injection into the corpus callosum was established. LFB staining, immunofluorescence, Western blot, and electron microscopy were used to study the severity of demyelination. Microglial phenotype and autophagy were detected by immunofluorescence and Western blot. Morris water maze was used to test spatial learning and memory ability. RESULTS: We have identified that LPC-mediated myelin damage was reduced by Hv1 deficiency. Furthermore, we found that ROS and autophagy of microglia increased in the demyelination region, which was also inhibited by Hv1 knockout. CONCLUSION: These results suggested that microglial Hv1 deficiency ameliorates demyelination through inhibition of ROS-mediated autophagy and microglial phenotypic transformation.


Assuntos
Autofagia/fisiologia , Doenças Desmielinizantes/metabolismo , Canais Iônicos/deficiência , Lisofosfatidilcolinas/toxicidade , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia
15.
J Cell Physiol ; 234(6): 9316-9327, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317635

RESUMO

Angiogenesis is positively correlated with the survival rate of stroke patients. Therefore, studying factors that initiate and promote angiogenesis after ischemic stroke is crucial for finding novel and effective treatment targets that improve the prognosis of stroke. X-box binding protein l splicing (XBP1s) plays a positive regulatory role in cell proliferation and angiogenesis. However, the role and mechanism of XBP1s on the proliferation of brain microvascular endothelial cells (BMECs) and angiogenesis after cerebral ischemia remains unclear. In the current study, we investigated the role XBP1s plays in BMEC proliferation and angiogenesis following cerebral ischemia. In this study, the roles of XBP1s on cell survival, apoptosis, cycle migration, and angiogenesis were determined in oxygen-glucose deprivation (OGD) treated BMECs. The expression of XBP1s in BMECs, which were exposed to OGD at 0, 2, 4, and 6 hr, increased in a time-dependent manner. The overexpression of XBP1s promoted cell survival, cell cycle, migration, and angiogenesis of BMECs, and inhibited the apoptosis in OGD-treated BMECs. In addition, the overexpression of XBP1s promoted the expression of cyclin D1, matrix metalloproteinase (MMP-2), and MMP-9, but inhibited cleaved Caspase-3 and cleaved Caspase-9 expression in OGD-treated BMECs. The overexpression of XBP1s also promoted the expression of hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, phosphatidylinositol-4,5-bisphosphate 3-kinase, p-AKT, p-mTOR, p-GSK3ß, and p-extracellular signal-regulated kinase1/2 in OGD-treated BMECs. The effect of XBP1s silencing was opposite to that of XBP1s overexpression. In conclusion, using an in vitro OGD model, we demonstrated that XBP1s may be a promising target for ischemic stroke therapy to maintain BMECs survival and induce angiogenesis.


Assuntos
Encéfalo/patologia , Células Endoteliais/patologia , Glucose/deficiência , Microvasos/patologia , Oxigênio/metabolismo , Splicing de RNA/genética , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética , Animais , Apoptose , Ciclo Celular , Movimento Celular , Sobrevivência Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Fisiológica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
16.
J Transl Med ; 17(1): 214, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262327

RESUMO

BACKGROUND: Acute ischemic stroke (AIS) due to large vessel occlusion (LVO) is a devastating cerebrovascular disorder, which could benefit from collateral circulation. Proteins associated with acute LVO pathogenesis and endothelial function may appear in blood samples of AIS patients due to LVO, thus permitting development of blood-based biomarkers for its diagnosis and prognosis. METHODS: This study is a single-center, retrospective, observational case-control trial. Consecutive patients who presented at the Department of Neurology of Tongji Hospital were recruited from July 2016 to April 2018. In the discovery phase, a proteomic approach with iTRAQ-based LC-MS/MS was used to investigate the altered proteomic pattern in plasma from patients with AIS due to LVO. In the validation study, Western blots was used to identify biomarkers associated with stroke diagnosis as well as their prognostic value associated with different collateral statuses. RESULTS: For this exploratory study, the proteomic analysis of plasma from 40 patients with AIS due to LVO and 20 healthy controls revealed seven differentially expressed proteins with a 1.2/0.83-fold or greater difference between groups. The four elevated proteins, PPBP (1.58 ± 0.78 vs 0.98 ± 0.37; P < 0.001), THBS1 (1.13 ± 0.88 vs 0.43 ± 0.26; P < 0.001), LYVE1 (1.61 ± 0.55 vs 0.97 ± 0.50; P < 0.001), and IGF2 (1.19 ± 0.42 vs 0.86 ± 0.24; P < 0.001), were verified by Western blots analysis in an independent cohort including 33 patients and 33 controls. A strong interaction was observed between the four-protein panel and the diagnosis of AIS due to LVO (AUC 0.947; P < 0.001). Furthermore, IGF2, LYVE1, and THBS1 were closely associated with collateral status (IGF2 0.115, 95% CI 0.016-0.841, P = 0.033; LYVE1 0.183, 95% CI 0.036-0.918, P = 0.039; THBS1 4.257, 95% CI 1.273-14.228, P = 0.019), and proved to be independent predictors of good outcome (IGF2 0.115, 95% CI 0.015-0.866, P = 0.036; LYVE1 0.028, 95% CI 0.002-0.334, P = 0.005; THBS1 3.294, 95% CI 1.158-9.372, P = 0.025) at a 3-month follow-up. CONCLUSIONS: The identified 4-biomarker panel could provide diagnostic aid to the existing imaging modalities for AIS due to LVO, and the prognostic value of IGF2, LYVE1, and THBS1 was proved in predicting functional outcomes related to collateral status. Trial registration ClinicalTrials.gov NCT03122002. Retrospectively registered April 20, 2017. URL of trial registry record: https://www.clinicaltrials.gov/ct2/show/NCT03122002?term=NCT+03122002&rank=1.


Assuntos
Biomarcadores/sangue , Isquemia Encefálica/sangue , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/complicações , Proteômica/métodos , Acidente Vascular Cerebral/sangue , Adulto , Idoso , Biomarcadores/análise , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Estudos de Casos e Controles , Transtornos Cerebrovasculares/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo
17.
Breast Cancer Res ; 20(1): 63, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29966525

RESUMO

After the publication of this work [1] an error in Fig. 1c was brought to our attention: the Western blots for PRDX6 and ß-actin were similar to those shown in lanes 5-6 of Fig. 4g. To verify these findings, we have repeated this experiment and the results are shown in a new Fig. 1c below. The repeated experimental results are consistent with the previously reported findings in the original study [1] and the functional role for PRDX6 in malignant progression of human cancer including breast cancer has been widely documented and recognized in numerous other studies [2]. We apologize for the error. However, this correction does not affect the conclusions of the article.

19.
Biochem Biophys Res Commun ; 493(3): 1159-1167, 2017 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-28943434

RESUMO

BACKGROUND: Chemokine (C-X-C motif) ligand 17 (CXCL17) is the latest member of the chemokine family. However, its function in various cancer types is unknown. The G protein-coupled receptor 35 (GPR35) was identified as the receptor of CXCL17 and named recently as CXCR8. The function of the CXCL17-CXCR8 (GPR35) biological axis in cancer has not been reported. METHODS: The expression of CXCL17 and CXCR8 (GPR35) in breast cancer cell lines and a tissue microarray (TMA) was detected through western blot and immunohistochemistry (IHC). Expression data in IHC were analyzed using clinicopatholigical and survival information. RESULTS: CXCL17 and CXCR8 (GPR35) were found to be variably expressed in breast cancer cell lines. Both expressed higher in breast cancer tissue than normal adjacent tissue. Although CXCL17 can interact with CXCR8 (GPR35) in breast cancer cells in vitro, the expression correlation between these two markers in breast cancer tissue was not found to be significant. As to clinical significance, CXCR8 (GPR35) expression was found to be significantly associated with advanced histological grade and higher proliferation rate indicated by Ki-67 expression. Although CXCL17 was not found to statistically correlate with any clinicopathological characteristics, it was found to be associated with shorter overall survival and is an independent marker of poor prognosis in breast cancer. In addition, CXCL17 was found to promote proliferation and migration of breast cancer cells in vitro and in vivo. CONCLUSIONS: We investigated the role of the CXCL17-CXCR8 (GPR35) axis in breast cancer for the first time. CXCL17 is a potential oncogene and promising therapeutic target, is an independent biomarker of poor prognosis in patients with breast cancer, and can promote proliferation and migration of breast cancer cells in vitro and in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocinas/genética , Quimiocinas CXC , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Am J Ther ; 23(6): e1788-e1800, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26196522

RESUMO

To compare the efficacy and safety of dexmedetomidine with other alternative sedative agents used for performing awake intubation. We conducted a meta-analysis of randomized controlled trials (RCTs) that compared the effects of dexmedetomidine with other alternative sedative agents used during awake intubation. The biomedical databases PubMed, Science Direct, and the Cochrane Library were searched for relevant RCTs with no restriction on the language of publication. The efficacy (level of sedation, success rate for intubation at the first attempt, intubation time, intubation conditions, and patient satisfaction) and safety (incidence of hypertension, hypotension, tachycardia, bradycardia, hypoxia, postsurgical memory, hoarseness, and sore throat) were assessed. Thirteen RCTs with a combined subject population of 591 patients came within the purview of this meta-analysis. Use of dexmedetomidine was associated with a higher Ramsay sedation scale score [mean difference (MD): 1.02, 95% confidence interval (CI), 0.77-1.28, P < 0.00001], vocal cord movement score (MD = 0.72, 95% CI, 0.20-1.24, P = 0.007), coughing scores (MD = 0.66, 95% CI, 0.10-1.22, P = 0.02), limb movement scores (MD = 0.69, 95% CI, 0.47-0.91, P < 0.00001); increased risk of bradycardia [relative risk (RR): 3.03, 95% CI, 1.38-6.68, P = 0.006] and hypotension (RR: 2.87, 95% CI, 1.44-5.75, P = 0.003); and lower risk of hypoxia (RR: 0.32, 95% CI, 0.15-0.70; P = 0.004) and postsurgical memory (RR: 0.50, 95% CI, 0.35-0.72, P = 0.0002). As indicated by our results, dexmedetomidine appears to be an effective and well-tolerated agent for performing awake intubation. Its use was associated with better intubation conditions, preservation of airway patency, and reduced recall of intubation, as compared with the traditional sedative agents. The risk of bradycardia and hypotension was significantly higher with dexmedetomidine as compared with that with other sedatives. However, these were easily managed with atropine and vasoactive agents.


Assuntos
Dexmedetomidina/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Intubação Intratraqueal/métodos , Bradicardia/induzido quimicamente , Bradicardia/epidemiologia , Dexmedetomidina/efeitos adversos , Humanos , Hipnóticos e Sedativos/efeitos adversos , Hipotensão/induzido quimicamente , Hipotensão/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA