Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Langmuir ; 40(5): 2591-2600, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38265289

RESUMO

Wounds caused by bacterial infections have become a major challenge in the medical field; however, the overuse of antibiotics has led to increased resistance and bioaccumulation. Therefore, it is urgent to develop an antibacterial agent with excellent antibacterial properties and biosafety. Here, we designed an antibacterial platform that combines photothermal and chemical kinetics therapies. Platinum-cobalt (PtCo) bimetallic nanoparticles (NPs) were first prepared, and then PtCo@MnO2 nanoflowers were obtained by adding MES buffer solution and KMnO4 to the PtCo bimetallic nanoparticle suspension using ultrasound. When light strikes metal NPs, they can strongly absorb the photon energy, resulting in photothermal properties. In addition, Pt and Co were used as the oxidase mimics, and MnO2 was used as the catalase mimic. In summary, the photothermal capacity of PtCo@MnO2 nanoflowers with rough surfaces can effectively disrupt the permeability of the bacterial cell membranes. Further, by catalyzing H2O2, PtCo@MnO2 nanoflowers can generate large amounts of hydroxyl free radicals, which can damage bacterial cell membranes, proteins, and DNA. In addition, MnO2 can effectively alleviate the hypoxic environment of the bacterially infected areas and activate deep bacteria, thus achieving the goal of complete sterilization. The in vitro and in vivo results showed that PtCo@MnO2 displayed excellent antibacterial properties and good biocompatibility.


Assuntos
Nanopartículas Metálicas , Óxidos , Antibacterianos/farmacologia , Antibacterianos/química , Peróxido de Hidrogênio , Compostos de Manganês/química , Óxidos/química , Esterilização
2.
Small ; 19(47): e2302587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37454336

RESUMO

Nanozyme-driven catalytic antibacterial therapy has become a promising modality for bacterial biofilm infections. However, current catalytic therapy of biofilm wounds is severely limited by insufficient catalytic efficiency, excessive inflammation, and deep tissue infection. Drawing from the homing mechanism of natural macrophages, herein, a hollow mesoporous biomimetic single-atomic nanozyme (SAN) is fabricated to actively target inflamed parts, suppress inflammatory factors, and eliminate deeply organized bacteria for enhance biofilm eradication. In the formulation, this biomimetic nanozyme (Co@SAHSs@IL-4@RCM) consists of IL-4-loaded cobalt SANs-embedded hollow sphere encapsulate by RAW 264.7 cell membrane (RCM). Upon accumulation at the infected sites through the specific receptors of RCM, Co@SAHS catalyze the conversion of hydrogen peroxide into hydroxyl radicals and are further amplify by NIR-II photothermal effect and glutathione depletion to permeate and destroy biofilm structure. This behavior subsequently causes the dissociation of RCM shell and the ensuing release of IL-4 that can reprogram macrophages, enabling suppression of oxidative injury and tissue inflammation. The work paves the way to engineer alternative "all-in-one" SANs with an immunomodulatory ability and offers novel insights into the design of bioinspired materials.


Assuntos
Biomimética , Interleucina-4 , Humanos , Antibacterianos/farmacologia , Biofilmes , Peróxido de Hidrogênio , Inflamação
3.
Langmuir ; 39(28): 9734-9743, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37389842

RESUMO

Bacterial infections caused by pathogenic bacteria are extremely threatening to human health. Currently, the treatment of bacterial infections relies heavily on antibiotics, leading to a high incidence of antibiotic abuse. Bacterial resistance appeared along with the misuse of antibiotics that produced growing harm to human beings. Therefore, a cutting-edge strategy for treating bacterial infections is indeed needed. Here we prepared QCuRCDs@BMoS2 nanocomposites (QBs) for an efficient bacterial trapping and triple quaternary ammonium salt/photothermal/photodynamic bactericidal method. Copper-doped carbon quantum dots were first prepared by using a solvothermal method, modified with quaternary ammonium salts, and then combined with grafted MoS2 nanoflowers. The long alkyl chains of QBs and the sharp surface of MoS2 facilitate the destruction of bacterial structures, while the electrostatic adsorption binds closely to bacteria, shortening the bactericidal distance of the reactive oxygen species (ROS). Moreover, the excellent photothermal performance under 808 nm irradiation in the near-infrared (NIR) region and deep penetrating heat can accelerate oxidative stress and achieve a multisynergistic bactericidal purpose. Consequently, QBs with ideal antibacterial properties and inherent brightness hold great promise in the biomedical field.


Assuntos
Compostos de Amônio , Molibdênio , Humanos , Antibacterianos/toxicidade , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Cobre/farmacologia , Bactérias
4.
Small ; 18(26): e2200895, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638464

RESUMO

Oxidative stress and local overactive inflammation have been considered major obstacles in diabetic wound treatment. Although antiphlogistic tactics have been reported widely, they are also challenged by pathogen contamination and compromised angiogenesis. Herein, a versatile integrated nanoagent based on 2D reductive covalent organic frameworks coated with antibacterial immuno-engineered exosome (PCOF@E-Exo) is reported to achieve efficient and comprehensive combination therapy for diabetic wounds. The E-Exo is collected from TNF-α-treated mesenchymal stem cells (MSCs) under hypoxia and encapsulated cationic antimicrobial carbon dots (CDs). This integrated nanoagent not only significantly scavenges reactive oxygen species and induces anti-inflammatory M2 macrophage polarization, but also stabilizes hypoxia-inducible factor-1α (HIF-1α). More importantly, the PCOF@E-Exo exhibits intriguing bactericide capabilities toward Gram-negative, Gram-positive, and drug-resistant bacteria, showing favorable intracellular bacterial destruction and biofilm permeation. In vivo results demonstrate that the synergetic impact of suppressing oxidative injury and tissue inflammation, promoting angiogenesis and eradicating bacterial infection, could significantly accelerate the infected diabetic fester wound healing with better therapeutic benefits than monotherapy or individual antibiotics. The proposed strategy can inspire further research to design more delicate platforms using the combination of immunotherapy with other therapeutic methods for more efficient ulcerated diabetic wounds treatments.


Assuntos
Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Inflamação , Neovascularização Patológica , Cicatrização
5.
Langmuir ; 38(34): 10679-10689, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35969813

RESUMO

In this paper, we reported a new kind of cooling and light-enhanced hydrophilic nanocomposite film (PE/JW-0.8%) with low-density polyethylene (LDPE) as the substrate. The wetting, photophysical, and mechanical properties of PE/JW-0.8% were tested. The emission band of the fluorescence centers at 420 nm, which is perfectly consistent with the absorption spectrum of plant photosynthesis. In addition, light can be scattered by PE/JW-0.8% to achieve a larger light distribution area. PE/JW-0.8% showed a good durability of hydrophilicity in the water rinsing test. Meanwhile, the elongation at the break of the film was significantly increased. Benefiting from the fence structure induced labyrinth effect, a maximum reduction of 6.7 °C in temperature monitoring for PE/JW-0.8% was observed in the detailed field experiments. Light intensity monitoring showed that light intensity in PE/JW-0.8% increased by a maximum of 57.1% compared to PE/LH. In the biological quality analysis of melon, it was found that the soluble sugar, soluble solid, and vitamin C content of melon increased by 13.34, 22.96, and 50.95%, respectively. In conclusion, these results confirm that PE/JW-0.8% has great application potential in the field of facility agriculture, buildings, and photovoltaic modules.


Assuntos
Nanocompostos , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Polietileno/química , Água/química
6.
Langmuir ; 36(44): 13263-13273, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33124835

RESUMO

Postoperative wound repair of solid tumors resection, which is afflicted by the complex tumor microenvironment (TME) and associated with the bacterial infection, is worsening and demands prompt solutions. Meanwhile, the tumor recurrence is frequently seen during the subsequent treatment due to intraoperative bleeding. For effective postoperative cancer therapy, nanoscale carriers occur as innovative and sensitive tools for monitoring the wound state, avoiding bacterial infection, and restraining tumor recurrence. Herein, a multifunctional sodium alginate (SA) hydrogel immobilizing hemoglobin (Hb) and pH-sensitive fluorescent changing carbon quantum dots (CQDs) is rationally designed. The multifunctionalization of obtained alginate@hemoglobin@CQDs hydrogel (SA@Hb@CQDs) simultaneously consists of detection, hemostasis, and chemodynamic therapy (CDT) with monitoring of wound pH based on CQDs, stanching triggered from SA hydrogel, and Fenton reaction induced by Hb. We demonstrated that SA@Hb@CQDs can stop bleeding quickly, collect wound status information in real-time, and avert bacterial infection as well as inhibit local tumor recurrence effectively. Therefore, our work provides a promising combination approach for postoperative tumor therapy.


Assuntos
Infecções Bacterianas , Pontos Quânticos , Alginatos , Carbono , Hemoglobinas , Humanos , Hidrogéis , Recidiva Local de Neoplasia , Microambiente Tumoral
7.
Analyst ; 145(10): 3592-3597, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32319476

RESUMO

In recent years, carbon dots (CDs) with red-emitting wavelengths have received increasing attention in cancer therapy and imaging. Here, we reported a multi-functional CD based platform combining bimodal magnetic resonance/fluorescence (MR/FL) imaging and chemodynamic therapy (CDT) for in vivo imaging of tumor tissues and efficient anticancer treatment. The red-emitting CDs were synthesized via a one-step solvothermal method with p-phenylenediamine as the carbon source. Ethylenediaminetetraacetic acid (EDTA) was covalently coupled to the surface of CDs and then complexed with Fe2+ and Gd3+ to obtain functionalized red CDs (CDs@EDTA@Gd@Fe). CDs@EDTA@Gd@Fe exhibited bright and stable fluorescence and strong T1-weighted MR imaging (MRI) contrast. Moreover, the CDs@EDTA@Gd@Fe showed an excellent anticancer effect both in vitro and in vivo via a Fenton reaction-based CDT by releasing Fe2+ in the tumor. Our study offers a promising strategy for developing multi-functional CDs for cancer theranostics.


Assuntos
Carbono/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Imagem Óptica/métodos , Nanomedicina Teranóstica/métodos , Células A549 , Humanos
8.
Langmuir ; 35(40): 13135-13144, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31510746

RESUMO

Chemotherapy is an effective method for treating cancer, clinically. However, side effects of drug and multidrug resistance restrict its application. In recent years, the combined treatment of chemotherapy and photothermal therapy (PTT) is becoming a promising method for treating cancer. PTT utilizes nanomaterials absorbing near-infrared light and producing heat to acquire advanced hyperthermia strategy for cancer treatment. Carbon nanomaterials with good biocompatibility, high surface area, and excellent photothermal properties are an excellent nanoplatform for drug delivery and PTT. Herein, porous carbon-coated magnetite nanoparticles (PCCMNs) were successfully synthesized by a one-pot solvothermal method. Magnetite, a contrast agent, can be used for magnetic resonance imaging. Hyaluronic acid was used to modify the PCCMNs to achieve targeted therapy. The obtained nanohybrid with a good photothermal effect can realize combined PTT/chemotherapy and will be a promising nanoplatform for high efficacy theranostics.


Assuntos
Antineoplásicos/uso terapêutico , Meios de Contraste/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Animais , Carbono/química , Liberação Controlada de Fármacos , Feminino , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos
9.
Langmuir ; 35(47): 15275-15286, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31665888

RESUMO

Conventional drug delivery systems for natural clay materials still face critical challenges in their practical application, including multiple bacterial infections, combined infection of bacteria and fungi, and low sterilization efficiency. In this work, we address these challenges using the multifunctional montmorillonite nanosheet-based (MMT-based) drug nanoplatform, which involves the antibiotic 5-fluorocytosine (5-FC), antibacterial metal copper ions, and quaternized chitosan (QCS). Composite material QCS/MMT/5-FCCu can can strongly inhibit Staphylococcus aureus (a typical Gram-positive bacterium), Escherichia coli (a typical Gram-negative bacterium), and Candida albicans (a fungus) because 5-FC coordinates with copper ions in situ and due to the deposition of QCS. The subsequent drug release behavior of 5-FCCu was studied, and the results show an initial high concentration kills microorganisms and long-acting sustained release inhibition. Moreover, in vivo wound experiments and toxicity experiments show the promotion of wound healing and excellent biocompatibility. As a demonstration of the utility of the latter, we have shown that the MMT-based smart platform can be used for the treatment of mixed infections of wounds.


Assuntos
Antibacterianos/uso terapêutico , Bentonita/química , Quitosana/química , Cobre/uso terapêutico , Flucitosina/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Bentonita/toxicidade , Candida albicans/efeitos dos fármacos , Linhagem Celular , Quitosana/toxicidade , Cobre/farmacologia , Cobre/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Flucitosina/farmacologia , Flucitosina/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanocompostos/toxicidade , Staphylococcus aureus/efeitos dos fármacos
10.
Nanotechnology ; 25(25): 255601, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24896800

RESUMO

A novel nanosphere based on carboxylated GO (GO-COOH) and hydroxypropyl-beta-CD (HP-ß-CD) was synthesized to construct a complex of GO-COO-HP-ß-CD. The complex formation process was studied using spectral characterization and transmission electron microscopy (TEM). X-ray diffraction and energy dispersive spectroscopy patterns show that HP-ß-CD molecules either cover or intercalate into GO-COOH interlayers in the complex. Fourier transform infrared spectroscopy results indicate that GO-COOH and HP-ß-CD are linked with covalent bonds formed via esterification. When employed as nanohybrid drug carriers for dexamethasone, the inclusion displays good dispersibility validated by dynamic light scattering (DLS). Cytotoxicity assays and hemolysis testing demonstrate that the nanospheres possess good biological compatibility. The loading capacity of dexamethasone is as high as 32.33%, with loading efficiency 64.66%.


Assuntos
Portadores de Fármacos/química , Nanosferas/química , Animais , Dexametasona/química , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Polímeros/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Adv Mater ; 36(3): e2307785, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857468

RESUMO

Chronic wounds caused by bacterial infections are a major challenge in medical fields. The hypoxia condition extremely induces reactive oxygen species (ROS) generation and upregulates the expression of hypoxia-inducible factor, both of which can increase the pro-inflammatory M1 subtype macrophages production while reducing the anti-inflammatory M2 subtype macrophages. Besides, bacteria-formed biofilms can hinder the penetration of therapeutic agents. Encouraged by natural motors automatically executing tasks, hypothesized that supplying sufficient oxygen (O2 ) would simultaneously drive therapeutic agent movement, rescue the hypoxic microenvironment, and disrupt the vicious cycle of inflammation. Here, small organic molecule-based nanoparticles (2TT-mC6B@Cu5.4 O NPs) that possess high photothermal conversion efficiency and enzymatic activities are developed, including superoxide dismutase-, catalase-, and glutathione peroxidase-like activity. 2TT-mC6B@Cu5.4 O NPs exhibit superior ROS-scavenging and O2 production abilities that synergistically relieve inflammation, alleviate hypoxia conditions, and promote their deep penetration in chronic wound tissues. Transcriptome analysis further demonstrates that 2TT-mC6B@Cu5.4O NPs inhibit biological activities inside bacteria. Furthermore, in vivo experiments prove that 2TT-mC6B@Cu5.4 O NPs-based hyperthermia can effectively eliminate bacteria in biofilms to promote wound healing.


Assuntos
Inflamação , Terapia Fototérmica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/terapia , Oxigênio , Cicatrização , Hipóxia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
12.
Int J Biol Macromol ; 259(Pt 2): 129402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219940

RESUMO

Getting rid of the biofilms is a major challenge when treating skin and soft tissue infections (SSTI), an inflammatory illness brought on by bacteria. Traditional magnetic materials have a limited dispersibility and a biofilm permeable property, making it challenging to remove biofilms and causing infection to linger. To solve these problems, we developed a kind of magnetic composite nanoplatform coated with indocyanine green carbon dots and modified with chitosan modification (Fe-ICGCDs@CS). Fe-ICGCDs@CS has high dispersibility and improves the conductivity of biofilms under magnetic action. Fe-ICGCDs@CS can adsorb bacteria via the positive charge and achieve precise photothermal sterilization and photodynamic therapy (PDT). Moreover, by catalyzing hydrogen peroxide (2 mM), Fe-ICGCDs@CS can produce oxygen to relieve the anoxic state in the deep layer of biofilms and activate dormant bacteria to make them sensitive to external stimuli. All in all, unlike the common "just kill" sterilization model, Fe-ICGCDs@CS can accurately kill bacteria and be recovered by an external magnetic field at the end of treatment, thus reducing the potential biological toxicity of nanomaterials. Therefore, the proposed Fe-ICGCDs@CS provides a new antibacterial method with low biotoxicity for clinical application in the treatment of biofilm infections.


Assuntos
Quitosana , Nanocompostos , Fotoquimioterapia , Antibacterianos/farmacologia , Biofilmes , Fenômenos Magnéticos
13.
J Colloid Interface Sci ; 675: 580-591, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986331

RESUMO

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.

14.
ACS Nano ; 18(5): 4089-4103, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270107

RESUMO

To meet the requirements of biomedical applications in the antibacterial realm, it is of great importance to explore nano-antibiotics for wound disinfection that can prevent the development of drug resistance and possess outstanding biocompatibility. Therefore, we attempted to synthesize an atomically dispersed ion (Fe) on phenolic carbon quantum dots (CQDs) combined with an organic photothermal agent (PTA) (Fe@SAC CQDs/PTA) via a hydrothermal/ultrasound method. Fe@SAC CQDs adequately exerted peroxidase-like activity while the PTA presented excellent photothermal conversion capability, which provided enormous potential in antibacterial applications. Based on our work, Fe@SAC CQDs/PTA exhibited excellent eradication of Escherichia coli (>99% inactivation efficiency) and Staphylococcus aureus (>99% inactivation efficiency) based on synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT). Moreover, in vitro experiments demonstrated that Fe@SAC CQDs/PTA could inhibit microbial growth and promote bacterial biofilm destruction. In vivo experiments suggested that Fe@SAC CQDs/PTA-mediated synergistic CDT and PTT exhibited great promotion to wound disinfection and recovery effects. This work indicated that Fe@SAC CQDs/PTA could serve as a broad-spectrum antimicrobial nano-antibiotic, which was simultaneously beneficial for bacterial biofilm eradication, wound disinfection, and wound healing.


Assuntos
Antibacterianos , Desinfecção , Antibacterianos/farmacologia , Biofilmes , Carbono , Escherichia coli , Ferro/química
15.
Colloids Surf B Biointerfaces ; 221: 113009, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399904

RESUMO

In this work, an effective method was explored to prepare silver nanoparticles/graphene oxide-sulfobutylether-ß-cyclodextrin (AgNPs/GO-SBE-ß-CD) antibacterial nanocomposite. Dopamine (DA) was used as a green and mild reductant to directly in situ reduce silver nitrate on Sulfobutylether-ß-cyclodextrin (SBE-ß-CD) modified graphene oxide (GO-SBE-ß-CD). Its synthesized, antibacterial properties and biocompatibility were studied. Results showed that silver nanoparticles with an average size of 73 nm were uniformly distributed on the GO-SBE-ß-CD sheets. In addition, AgNPs/GO-SBE-ß-CD were proved an effective antibacterial material against both gram-negative and gram-positive, reduced the viability of E. coli and S. aureus by 90 % at 40 µg/mL. At the same time, AgNPs/GO-SBE-ß-CD co-cultured with L929 cells did not show cytotoxicity. In vivo experiment, AgNPs/GO-SBE-ß-CD showed good biocompatibility. Collectively, AgNPs/GO-SBE-ß-CD is a promising material to prevent bacterial infection, expecting to be applied in wound healing.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Staphylococcus aureus , Escherichia coli , Prata/farmacologia , Antibacterianos/farmacologia
16.
Int J Biol Macromol ; 251: 126368, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591434

RESUMO

In this study, a kind of nanocomposite film was fabricated via combining silk fibroin, polyvinyl alcohol (SF/PVA) and AgNP/polydopamine-modified Montmorillonite (AgNP/PDA-Mt). The structural characteristics and properties of the SF/PVA/AgNP/PDA-Mt nanocomposites films were identified using X-ray diffraction (XRD), Thermal gravimetric analyzer (TGA), Fourier transform infrared spectroscopy (FTIR), EDS-mapping analyses and Scanning electron microscope (SEM). The results indicated enhanced thermal performance of SF/PVA/AgNP/PDA-Mt nanocomposites with increased AgNP/PDA-Mt weight. The nanocomposite film exhibited excellent antibacterial activity against E. coli and S. aureus. The 2 % SF/PVA/AgNP/PDA-Mt film showed the highest zone of inhibition with an average inhibition circle diameter of 26.1 mm against E. coli and 20.61 mm against S. aureus. Cytotoxicity test results indicated that the nanocomposites films were biocompatible with L929 cells with a 100 % survival rate, which can be considered as one of the advantages of new nanocomposites films. These findings suggest that SF/PVA/AgNP/PDA-Mt films have potential clinical applications in wound dressing and antibacterial biomedical applications.

17.
ACS Appl Mater Interfaces ; 15(36): 42227-42240, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37658037

RESUMO

Even though great progress has been achieved in mimicking natural enzyme engineering, few artificial enzymes with efficient catalytic performance and multifunction have been reported. In this study, novel manganese-iron dual single-atom catalysts (Mn/Fe SACs) were synthesized via a hydrothermal/pyrolysis recipe. Iron atoms inside the Mn/Fe SACs adequately exerted the peroxidase (POD)-like activity, its Michaelis-Menten constant, and maximum initial velocity superior to the horseradish peroxidase. Manganese atoms sufficiently catalyzed the H2O2 to generate oxygen (O2), which alleviated the challenge of the continued lack of O2 in the infected wound. In addition, Mn/Fe SACs possess a glutathione oxidase-like activity that further enhanced POD-like activity in the therapeutic process. The antibacterial rates of Mn/Fe SACs were 95 and 94.5% for Escherichia coli and Staphylococcus aureus, respectively. In vitro anti-inflammatory experiments demonstrated that Mn/Fe SACs could regulate the polarization of macrophages into the anti-inflammatory M2 subtype. In vivo wound healing experiments suggested that the combination therapy of Mn/Fe SACs and chemodynamic therapy presented a great promotion of the recovery rate. Moreover, the O2 generated by the catalase-like process contributed to the catalysts permeating the interior of the infected wounds and achieved preferable abscess elimination ability. This work revealed the potential of Mn/Fe SACs as broad-spectrum antimicrobial materials, which provided a novel strategy for treating infected and abscess wounds.


Assuntos
Desinfecção , Infecção dos Ferimentos , Humanos , Abscesso , Manganês , Peróxido de Hidrogênio , Infecção dos Ferimentos/tratamento farmacológico , Oxigênio , Catálise , Escherichia coli
18.
Adv Sci (Weinh) ; 10(13): e2207507, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847061

RESUMO

With the threat posed by drug-resistant pathogenic bacteria, developing non-antibiotic strategies for eradicating clinically prevalent superbugs remains challenging. Ferroptosis is a newly discovered form of regulated cell death that can overcome drug resistance. Emerging evidence shows the potential of triggering ferroptosis-like for antibacterial therapy, but the direct delivery of iron species is inefficient and may cause detrimental effects. Herein, an effective strategy to induce bacterial nonferrous ferroptosis-like by coordinating single-atom metal sites (e.g., Ir and Ru) into the sp2 -carbon-linked covalent organic framework (sp2 c-COF-Ir-ppy2 and sp2 c-COF-Ru-bpy2 ) is reported. Upon activating by light irradiation or hydrogen peroxide, the as-constructed Ir and Ru single-atom catalysts (SACs) can significantly expedite intracellular reactive oxygen species burst, enhance glutathione depletion-related glutathione peroxidase 4 deactivation, and disturb the nitrogen and respiratory metabolisms, leading to lipid peroxidation-driven ferroptotic damage. Both SAC inducers show potent antibacterial activity against Gram-positive bacteria, Gram-negative bacteria, clinically isolated methicillin-resistant Staphylococcus aureus (MRSA), and biofilms, as well as excellent biocompatibility and strong therapeutic and preventive potential in MRSA-infected wounds and abscesses. This delicate nonferrous ferroptosis-like strategy may open up new insights into the therapy of drug-resistant pathogen infection.


Assuntos
Ferroptose , Estruturas Metalorgânicas , Staphylococcus aureus Resistente à Meticilina , Domínio Catalítico , Antibacterianos/farmacologia
19.
Acta Biomater ; 164: 563-576, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004783

RESUMO

Single-atomic nanozymes (SANZs) characterized by atomically dispersed single metal atoms have recently contributed to breakthroughs in biomedicine due to their satisfactory catalytic activity and superior selectivity compared to their nanoscale counterparts. The catalytic performance of SANZs can be improved by modulating their coordination structure. Therefore, adjusting the coordination number of the metal atoms in the active center is a potential method for enhancing the catalytic therapy effect. In this study, we synthesized various atomically dispersed Co nanozymes with different nitrogen coordination numbers for peroxidase (POD)-mimicking single-atomic catalytic antibacterial therapy. Among the polyvinylpyrrolidone modified single-atomic Co nanozymes with nitrogen coordination numbers of 3 (PSACNZs-N3-C) and 4 (PSACNZs-N4-C), single-atomic Co nanozymes with a coordination number of 2 (PSACNZs-N2-C) had the highest POD-like catalytic activity. Kinetic assays and Density functional theory (DFT) calculations indicated that reducing the coordination number can lower the reaction energy barrier of single-atomic Co nanozymes (PSACNZs-Nx-C), thereby increasing their catalytic performance. In vitro and in vivo antibacterial assays demonstrated that PSACNZs-N2-C had the best antibacterial effect. This study provides proof of concept for enhancing single-atomic catalytic therapy by regulating the coordination number for various biomedical applications, such as tumor therapy and wound disinfection. STATEMENT OF SIGNIFICANCE: The use of nanozymes that contain single-atomic catalytic sites has been shown to effectively promote the healing of bacteria-infected wounds by exhibiting peroxidase-like activity. The homogeneous coordination environment of the catalytic site has been associated with high antimicrobial activity, which provides insight into designing new active structures and understanding their mechanisms of action. In this study, we designed a series of cobalt single-atomic nanozymes (PSACNZs-Nx-C) with different coordination environments by shearing the Co-N bond and modifying polyvinylpyrrolidone (PVP). The synthesized PSACNZs-Nx-C demonstrated enhanced antibacterial activity against both Gram-positive and Gram-negative bacterial strains, and showed good biocompatibility in both in vivo and in vitro experiments.


Assuntos
Cobalto , Povidona , Cobalto/farmacologia , Peroxidases/química , Peroxidase , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/química , Nitrogênio/química
20.
ACS Appl Mater Interfaces ; 15(5): 7442-7453, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695810

RESUMO

Conferring versatility to superhydrophobic materials is extremely desirable to advance their utility. Herein, we have developed a superhydrophobic material with montmorillonite as microskeleton supports and in situ grown ZIF-8 nanoparticles and loaded them with newly developed fluorescent carbon dots. In situ growth of the ZIF-8 on OMMT constructs a dense nanoscale rough structure and meanwhile self-assembly generates abundant microporous, thus forming unique hierarchical microporous/microsheet/nanoparticle tri-tier micro and nano structures. Then the multifunctional superhydrophobic coating is fabricated by a facile spraying technique using polydimethylsiloxane (PDMS) as a multifunctional polymer binder. The PDMS/RB-CDs/ZIF-8@OMMT exhibits superhydrophobicity with a water contact angle of 164.7° and a water sliding angle of 1.4°, which also possesses good self-cleaning performance. Moreover, novel carbon dots are developed in this work which can confer unique fluorescent properties and photothermal properties to materials. Fluorescence characterization reveals the multiple emission peaks among 300-800 nm and excitation wavelength dependence and independence. Photothermal experiments unveil an efficient light-to-heat conversion caused by the light traps and absorption wavelengths associated with photothermal heating. Benefiting from the dense microporous/microsheet/nanoparticle structures, the superhydrophobicity is still maintained after 120 cycles of abrasion. Moreover, electrochemical impedance spectroscopy (EIS) reveals a significant increase in impedance, which is associated with excellent corrosion resistance. The superhydrophobic coating also exhibits superior UV resistance and good thermal stability. Multifunctional fluorescent superhydrophobic materials will enable the development of various and potential applications in different fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA