Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622921

RESUMO

Cardiac looping and trabeculation are key processes during cardiac chamber maturation. However, the underlying mechanisms remain incompletely understood. Here, we report the isolation, cloning and characterization of the proprotein convertase furina from the cardiovascular mutant loft in zebrafish. loft is an ethylnitrosourea-induced mutant and has evident defects in the cardiac outflow tract, heart looping and trabeculation, the craniofacial region and pharyngeal arch arteries. Positional cloning revealed that furina mRNA was barely detectable in loft mutants, and loft failed to complement the TALEN-induced furina mutant pku338, confirming that furina is responsible for the loft mutant phenotypes. Mechanistic studies demonstrated that Notch reporter Tg(tp1:mCherry) signals were largely eliminated in mutant hearts, and overexpression of the Notch intracellular domain partially rescued the mutant phenotypes, probably due to the lack of Furina-mediated cleavage processing of Notch1b proteins, the only Notch receptor expressed in the heart. Together, our data suggest a potential post-translational modification of Notch1b proteins via the proprotein convertase Furina in the heart, and unveil the function of the Furina-Notch1b axis in cardiac looping and trabeculation in zebrafish, and possibly in other organisms.


Assuntos
Pró-Proteína Convertases , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Coração , Organogênese/genética , Receptores Notch/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Nucleic Acids Res ; 45(6): 3422-3436, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27899647

RESUMO

Haploinsufficiency of EFTUD2 (Elongation Factor Tu GTP Binding Domain Containing 2) is linked to human mandibulofacial dysostosis, Guion-Almeida type (MFDGA), but the underlying cellular and molecular mechanisms remain to be addressed. We report here the isolation, cloning and functional analysis of the mutated eftud2 (snu114) in a novel neuronal mutant fn10a in zebrafish. This mutant displayed abnormal brain development with evident neuronal apoptosis while the development of other organs appeared less affected. Positional cloning revealed a nonsense mutation such that the mutant eftud2 mRNA encoded a truncated Eftud2 protein and was subjected to nonsense-mediated decay. Disruption of eftud2 led to increased apoptosis and mitosis of neural progenitors while it had little effect on differentiated neurons. Further RNA-seq and functional analyses revealed a transcriptome-wide RNA splicing deficiency and a large amount of intron-retaining and exon-skipping transcripts, which resulted in inadequate nonsense-mediated RNA decay and activation of the p53 pathway in fn10a mutants. Therefore, our study has established that eftud2 functions in RNA splicing during neural development and provides a suitable zebrafish model for studying the molecular pathology of the neurological disease MFDGA.


Assuntos
Apoptose , Células-Tronco Neurais/citologia , Neurogênese/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Processamento de RNA/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/anormalidades , Clonagem Molecular , Éxons , Íntrons , Mutação , Neurônios/citologia , Degradação do RNAm Mediada por Códon sem Sentido , Splicing de RNA , Medula Espinal/anormalidades , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
3.
Cell Regen ; 10(1): 34, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34725734

RESUMO

Organ regeneration is an important, fascinating, and old topic while much remains unknown in spite of extensive investigations for decades. From March 25th to 27th, 2021, the Third Chinese Symposium on Organ Regeneration took place in the beautiful ocean city of Zhoushan, Zhejiang, China. This biennial conference attracted ~ 300 academic attendees: students, postdoctoral fellows, and principal investigators, in addition to few industrial investigators. The mixed live and virtual talks covered the broad field of organ regeneration from different animal organisms to human organoids, and concluded with some impressive advances on inflammatory signaling, regenerative signaling mechanisms, new technologies, and applications for organ regeneration.

4.
Cell Regen ; 10(1): 13, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821373

RESUMO

Heart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection. We highlight several important signaling pathways for cardiomyocyte proliferation and propose a working model of how these injury-induced signals promote cardiomyocyte proliferation. Thus, this concise review provides up-to-date research progresses on heart regeneration for investigators in the field of regeneration biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA