RESUMO
Enantiopure Si-stereogenic organosilanes are highly valued in the fields of organic synthesis, development of advanced materials, and drug discovery. However, they are not naturally occurring, and their synthesis has been largely confined to resolution of racemic silanes or desymmetrization of symmetric silanes. In contrast, the dynamic kinetic asymmetric transformation (DYKAT) of racemic organosilanes offers a mechanistically distinct approach and would broaden the accessibility of Si-stereogenic silanes in an enantioconvergent manner. In this study, we report a Lewis base-catalyzed DYKAT of racemic chlorosilanes. The chiral isothiourea catalyst, (S)-benzotetramisole, facilitates silyletherification with phenols, yielding (R)-silylethers in good yields with high enantioselectivity (27 examples, up to 86% yield, up to 98:2 er). Kinetic analysis, control experiments, and DFT calculations suggest that a two-catalyst-bound pentacoordinate silicate is responsible for the Si-configurational epimerization of the ion-paired tetracoordinated silicon intermediates.
RESUMO
BACKGROUND: The genus Libanotis Haller ex Zinn, nom. cons., a contentious member of Apiaceae, encompasses numerous economically and medicinally significant plants, comprising approximately 30 species distributed across Eurasia. Despite many previous taxonomic insights into it, phylogenetic studies of the genus are still lacking. And the establishment of a robust phylogenetic framework remains elusive, impeding advancements and revisions in the taxonomic system for this genus. Plastomes with greater variability in their genetic characteristics hold promise for building a more robust Libanotis phylogeny. RESULTS: During our research, we sequenced, assembled, and annotated complete plastomes for twelve Libanotis species belong to three sections and two closely related taxa. We conducted a comprehensive comparative analysis through totally thirteen Libanotis plastomes for the genus, including an additional plastome that had been published. Our results suggested that Libanotis plastome was highly conserved between different subclades, while the coding regions were more conserved than the non-coding regions, and the IR regions were more conserved than the single copy regions. Nevertheless, eight mutation hotspot regions were identified among plastomes, which can be considered as candidate DNA barcodes for accurate species identification in Libanotis. The phylogenetic analyses generated a robustly framework for Libanotis and revealed that Libanotis was not a monophyletic group and their all three sections were polygenetic. Libanotis schrenkiana was sister to L. sibirica, type species of this genus, but the remainders scattered within Selineae. CONCLUSION: The plastomes of Libanotis exhibited a high degree of conservation and was effective in enhancing the support and resolution of phylogenetic analyses within this genus. Based on evidence from both phylogeny and morphology, we propose the recognition of "Libanotis sensu stricto" and provide taxonomic recommendations for other taxa that previously belonged to Libanotis. In conclusion, our study not only revealed the phylogenetic position and plastid evolution of Libanotis, but also provided new insights into the phylogeny of the family Apiaceae and phylogenetic relationships within the tribe Selineae.
Assuntos
Apiaceae , Filogenia , Evolução Molecular , Plastídeos/genética , PlantasRESUMO
BACKGROUND: The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS: In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION: The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Assuntos
Apiaceae , Sanicula , Filogenia , Plastídeos , CloroplastosRESUMO
BACKGROUND: Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both the graft and the pediatric recipient. However, there is limited research on DGF in pediatric kidney transplant recipients. This study aims to develop a predictive model for the risk of DGF occurrence after pediatric kidney transplantation by integrating donor and recipient characteristics and utilizing machine learning algorithms, ultimately providing guidance for clinical decision-making. METHODS: This single-center retrospective cohort study includes all recipients under 18 years of age who underwent single-donor kidney transplantation at our hospital between 2016 and 2023, along with their corresponding donors. Demographic, clinical, and laboratory examination data were collected from both donors and recipients. Univariate logistic regression models and differential analysis were employed to identify features associated with DGF. Subsequently, a risk score for predicting DGF occurrence (DGF-RS) was constructed based on machine learning combinations. Model performance was evaluated using the receiver operating characteristic curves, decision curve analysis (DCA), and other methods. RESULTS: The study included a total of 140 pediatric kidney transplant recipients, among whom 37 (26.4%) developed DGF. Univariate analysis revealed that high-density lipoprotein cholesterol (HDLC), donor after circulatory death (DCD), warm ischemia time (WIT), cold ischemia time (CIT), gender match, and donor creatinine were significantly associated with DGF (P < 0.05). Based on these six features, the random forest model (mtry = 5, 75%p) exhibited the best predictive performance among 97 machine learning models, with the area under the curve values reaching 0.983, 1, and 0.905 for the entire cohort, training set, and validation set, respectively. This model significantly outperformed single indicators. The DCA curve confirmed the clinical utility of this model. CONCLUSIONS: In this study, we developed a machine learning-based predictive model for DGF following pediatric kidney transplantation, termed DGF-RS, which integrates both donor and recipient characteristics. The model demonstrated excellent predictive accuracy and provides essential guidance for clinical decision-making. These findings contribute to our understanding of the pathogenesis of DGF.
Assuntos
Função Retardada do Enxerto , Transplante de Rim , Aprendizado de Máquina , Doadores de Tecidos , Humanos , Transplante de Rim/efeitos adversos , Feminino , Masculino , Criança , Estudos Retrospectivos , Adolescente , Pré-Escolar , LactenteRESUMO
Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that CoâOâV bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.
RESUMO
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Assuntos
Liliaceae , Filogenia , Liliaceae/genética , Liliaceae/classificação , Transcriptoma , Evolução Molecular , Plastídeos/genética , DNA Mitocondrial/genéticaRESUMO
This publisher's note corrects an error in Appl. Opt.63, 1411 (2024)APOPAI0003-693510.1364/AO.512229.
RESUMO
Because of the high efficiency of frequency conversion and beam-target coupling, a fourth harmonic (4ω) laser has a splendid application prospect in a high-power laser facility. The polarization smoothing (PS) crystal is preferably after the frequency conversion crystal to flexibly obtain the best uniformity illumination of the target. However, as a high irradiance 4ω laser beam propagates through the PS crystal, the transverse stimulated Raman scattering (TSRS) effect of the PS crystal will be stronger, resulting in significant energy dissipation and crystal damage. This paper proposes a novel, to the best of our knowledge, fourth harmonic generation (FHG) scheme based on an orthogonal cascade of the DKDP crystals. This orthogonal cascaded FHG (OC-FHG) scheme employs two cascaded FHG crystals with orthogonal optical axes, and the PS crystal is in the middle. The PS crystal can rotate the polarization direction of the 2ω laser by 90°, while the polarization direction of the 4ω laser is maintained to a great extent. This OC-FHG scheme realizes the FHG by two steps, and the laser intensity at the PS crystal cuts down nearly 50%. The output intensity of the 4ω laser can be increased from 1.8G W/c m 2 to about 3.6G W/c m 2 under the condition of effectively inhibiting the TSRS effect. Meanwhile, the output 4ω laser contains two orthogonal polarized beams realizing in-beam polarization smoothing instantaneously. In addition, the novel FHG scheme can also have a high conversion efficiency and bandwidth tolerance.
RESUMO
Objective: The objective of this study was to investigate the early application of sacubitril valsartan sodium (LCZ696) following acute myocardial infarction (AMI) and its impact on ventricular remodeling and the TGF-ß1/Smad3 signaling pathway in patients. Methods: The clinical data of 73 patients with AMI admitted to the hospital from June 2021 to September 2022 were retrospectively analyzed, and the patients were grouped according to the treatment methods, including 36 cases in the control group (conventional drug treatment) and 37 cases in the observation group (conventional drug + LCZ696 treatment). The clinical efficacy, cardiac function parameters [left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), stroke volume (SV)], cardiac function biochemical indicators [N-terminal pro-B-type natriuretic peptide (NT-proBNP), galectin 3 (Gal-3), amino-terminal peptide of type III procollagen (PIIINP)], ventricular remodeling indicators [left ventricular posterior wall end-diastolic thickness (PWD), posterior wall end-systolic thickness (PWS), ventricular septal end-systolic thickness (IVSS)], ventricular hydrodynamic parameters [left ventricular flow rate in peak ejection (FRPE), flow reversal rate (FRR), flow reversal interval (FRI)], TGF-ß 1/Smad3 signaling pathway-related indicators (TGF-ß1, Smad3), quality of life score (SF-36 Quality of Life Scale) and occurrence of adverse reactions were compared between the two groups. Results: The main findings of the study are as follows: The observation group was significantly better than the control group in many aspects such as overall clinical effectiveness, cardiac function parameters, biochemical indicators, ventricular structure and function, TGF-ß1/Smad3 signaling pathway, and quality of life. Specifically, the observation group showed more significant positive effects in terms of improvement of cardiac function, adjustment of biochemical status, and adjustment of ventricular structure and fluid dynamics parameters. These results provide strong support for the application of new therapeutic approaches in the management of cardiovascular disease. After treatment, the total clinical effective rate in the observation group (89.19%) was significantly higher than that in the control group (69.44%) (P < .05). LVEF and SV in the two groups were significantly increased (P < .05), while LVEDD was significantly decreased (P < .05), and there were statistically significant differences in parameters between the two groups (P < .05). The levels of NT-proBNP, Gal-3 and PIIINP in both groups were significantly reduced (P < .05), and the levels in the observation group were significantly lower than those in the control group (P < .05). The PWD, PWS and IVSS in both groups significantly declined (P < .05), and the indicators in the observation group were significantly lower than those in the control group (P < .05). The FRPE and FRR in the two groups were significantly enhanced (P < .05), while the FRI was significantly reduced (P < .05), and the differences in the above parameters between the two groups were statistically significant (P < .05). The levels of TGF-ß1 and Smad3 in the two groups were significantly declined (P < .05), and the levels in the observation group were significantly lower than those in the control group (P < .05). During the period from before treatment to 6 months of treatment, the quality of life score in the two groups showed a significant downward trend (P < .05), and the score in the observation group after 3 months to 6 months of treatment was significantly lower than that in the control group (P < .05). During treatment, there was no statistical significance in the total incidence rate of adverse reactions between the two groups (P > .05). Conclusion: Early application of LCZ696 after AMI has a significant efficacy, and it can effectively improve the ventricular remodeling, regulate the expression levels of TGF-ß1 and Smad3, inhibit the TGF-ß1/Smad3 signaling pathway, promote the improvements of cardiac function and quality of life, and it has good safety and is worthy of clinical promotion and application. The study's key findings have important clinical implications for understanding and managing acute myocardial infarction (AMI). The observation group showed significant improvements in overall clinical efficacy, cardiac function, biochemical status, ventricular structure and function, etc., providing strong evidence for comprehensive treatment of AMI patients. This treatment method is expected to become an important part of the care and treatment strategy for AMI patients, help reduce cardiovascular risk, improve quality of life, and provide new research directions for future AMI treatment.
Assuntos
Aminobutiratos , Compostos de Bifenilo , Combinação de Medicamentos , Infarto do Miocárdio , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Valsartana , Remodelação Ventricular , Humanos , Valsartana/uso terapêutico , Valsartana/farmacologia , Masculino , Feminino , Remodelação Ventricular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Pessoa de Meia-Idade , Proteína Smad3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aminobutiratos/farmacologia , Aminobutiratos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Compostos de Bifenilo/uso terapêutico , Estudos Retrospectivos , Idoso , Tetrazóis/farmacologia , Tetrazóis/uso terapêuticoRESUMO
Retaining ferroelectricity in ultrathin films or nanostructures is crucial for miniaturizing ferroelectric devices, but it is a challenging task due to intrinsic depolarization and size effects. In this study, we have shown that it is possible to stably maintain in-plane polarization in an extremely thin, one-unit-cell thick epitaxial Bi2WO6 film. The use of a perfectly lattice-matched NdGaO3 (110) substrate for the Bi2WO6 film minimizes strain and enhances stability. We attribute the residual polarization in this ultrathin film to the crystal stability of the Bi-O octahedral framework against structural distortions. Our findings suggest that ferroelectricity can surpass the critical thickness limit through proper strain engineering, and the Bi2WO6/NdGaO3 (110) system presents a potential platform for designing low-energy consumption, nonvolatile ferroelectric memories.
RESUMO
The incidence of acute kidney injury (AKI) is on the rise and is associated with high mortality; however, there are currently few effective treatments. Moreover, the relationship between Tregs and other components of the immune microenvironment (IME) in the pathogenesis of AKI remains unclear. We downloaded four publicly accessible AKI datasets, GSE61739, GSE67401, GSE19130, GSE81741, GSE19288 and GSE106993 from the gene expression omnibus (GEO) database. Additionally, we gathered two kidney single-cell sequencing (scRNA-seq) samples from the Department of Organ Transplantation at Zhujiang Hospital of Southern Medical University to investigate chronic kidney transplant rejection (CKTR). Moreover, we also collected three samples of normal kidney tissue from GSE131685. By analysing the differences in immune cells between the AKI and Non-AKI groups, we discovered that the Non-AKI group contained a significantly greater number of Tregs than the AKI group. Additionally, the activation of signalling pathways, such as inflammatory molecules secretion, immune response, glycolytic metabolism, NOTCH, FGF, NF-κB and TLR4, was significantly greater in the AKI group than in the Non-AKI group. Additionally, analysis of single-cell sequencing data revealed that Tregs in patients with chronic kidney rejection and in normal kidney tissue have distinct biology, including immune activation, cytokine production, and activation fractions of signalling pathways such as NOTCH and TLR4. In this study, we found significant differences in the IME between AKI and Non-AKI, including differences in Tregs cells and activation levels of biologically significant signalling pathways. Tregs were associated with lower activity of signalling pathways such as inflammatory response, inflammatory molecule secretion, immune activation, glycolysis.
RESUMO
The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.
Assuntos
Allium , Amaryllidaceae , Genomas de Plastídeos , Allium/genética , Amaryllidaceae/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico , Evolução MolecularRESUMO
BACKGROUND: The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS: Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION: Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.
Assuntos
Ferula , Genoma de Cloroplastos , Genomas de Plastídeos , Filogenia , Evolução Molecular , Genoma de Cloroplastos/genética , Códon/genéticaRESUMO
BACKGROUND: Several studies have found that the prognostic nutritional index (PNI), controlling nutritional status (CONUT), and Glasgow Prognostic Score (GPS) of patients with laryngeal cancer accurately predict their prognosis. However, there is no consensus regarding the best assessment tool. Therefore, this study aimed to confirm the predictive value of the three nutritional scoring systems for the prognosis of patients with laryngeal cancer. METHODS: This study analyzed a cohort of 427 patients with laryngeal cancer who visited our hospital. PNI, CONUT, and GPS were calculated, and the relationship between these indicators and prognosis was examined. RESULTS: The optimal cut-off levels for overall survival (OS) of laryngeal cancer patients determined by PNI, CONUT, and GPS were 45, 3, and 0, respectively. When patients were stratified based on these thresholds, OS and disease-free survival (DFS) were significantly decreased in the malnutrition group (all three, p < 0.05). The OS rates of patients with laryngeal cancer were significantly affected by the three scores according to multivariate analysis. CONCLUSIONS: The three scoring methods had a high predictive value for the prognosis of patients with laryngeal cancer, with GPS having the strongest correlation with the prognosis of laryngeal cancer patients.
Assuntos
Neoplasias Laríngeas , Avaliação Nutricional , Humanos , Prognóstico , Estado Nutricional , Projetos de PesquisaRESUMO
BACKGROUND: Repairing of a duodenal perforation is a well accepted procedure, but clinically, approximately 4% of patients develop duodenal leaks after perforation repair, increasing the risk of death. We retrospectively analyzed clinical data from 168 patients at our hospital to explore risk factors for duodenal leak after perforation repair and developed a nomogram for predicting postoperative duodenal leak. METHODS: This retrospective case-control study totalled 168 patients undergoing repair of a duodenal perforation with omentopexy at the General Surgery Department, Dongnan Hospital of Xiamen University, from January 2012 to January 2022. The patients were divided into the non-leak group and the leak group. Risk factors were evaluated by analyzing the patient's sex, shock, diameter and anatomic position of the ulcer, use of NSAIDS and Glucocorticoid, history of drinking, diabetes, chronic diseases, age, time of onset of symptoms and lab tests. RESULT: One hundred fifty-six patients (92.9%) who did not develop leaks after repair of a duodenal perforation were included in the non-leak group, and 12 (7.1%) developed leaks were included in the leak group. In univariate analysis, there were significant differences between the two groups referring to age, shock, NSAIDs, albumin, and perforation size (P < 0.05). The area under the ROC curve for perforation diameter was 0.737, the p-value was 0.006, the optimal cutoff point was 11.5, sensitivity was 58.3%, and specificity was 93.6%, the positive predictive value is 41.1%, and the negative predictive value is 98.0%. In the internal validation of the performance of the nomogram, the C-index and AUC of the model were 0.896(95%CI 0.81-0.98), demonstrating that the nomogram model was well calibrated. CONCLUSION: The study discussed the risk factors for postoperative duodenal leak in patients undergoing repair of a duodenal perforation, and a nomogram was constructed to predict the leak. Future prospective studies with large sample sizes and multiple centres are needed to further elucidate the risk of duodenal leak after repair of a duodenal perforation.
Assuntos
Úlcera Duodenal , Úlcera Péptica Perfurada , Humanos , Estudos Retrospectivos , Estudos de Casos e Controles , Estudos Prospectivos , Duodeno/cirurgia , Úlcera Duodenal/cirurgia , Úlcera Péptica Perfurada/etiologia , Úlcera Péptica Perfurada/cirurgia , Fatores de RiscoRESUMO
Puerariae Lobatae Radix, the dried root of Pueraria lobata, is a traditional Chinese medicine with a long history. Puerariae Lobatae Caulis as an adulterant is always mixed into Puerariae Lobatae Radix for sales in the market. This study employed hyperspectral imaging(HSI) to distinguish between the two products. VNIR lens(spectral scope of 410-990 nm) and SWIR lens(spectral scope of 950-2 500 nm) were used for image acquiring. Multi-layer perceptron(MLP), partial least squares discriminant analysis(PLS-DA), and support vector machine(SVM) were employed to establish the full-waveband models and select the effective wavelengths for the distinguishing between Puerariae Lobatae Caulis and Puerariae Lobatae Radix, which provided technical and data support for the development of quick inspection equipment based on HSI. The results showed that MLP model outperformed PLS-DA and SVM models in the accuracy of discrimination with full wavebands in VNIR, SWIR, and VNIR+SWIR lens, which were 95.26%, 99.11%, and 99.05%, respectively. The discriminative band selection(DBS) algorithm was employed to select the effective wavelengths, and the discrimination accuracy was 93.05%, 98.05%, and 98.74% in the three different spectral scopes, respectively. On this basis, the MLP model combined with the effective wavelengths within the range of 2 100-2 400 nm can achieve the accuracy of 97.74%, which was close to that obtained with the full waveband. This waveband can be used to develop quick inspection devices based on HSI for the rapid and non-destructive distinguishing between Puerariae Lobatae Radix and Puerariae Lobatae Caulis.
Assuntos
Pueraria , Imageamento Hiperespectral , Medicina Tradicional Chinesa , Algoritmos , Redes Neurais de ComputaçãoRESUMO
Ischemia reperfusion injury(IRI) is an important factor affecting the early function and long-term survival of transplanted kidney. Single cell RNA sequencing (scRNA-seq) is a powerful method for investigating cell-specific transcriptome changes in the kidney. This study aimed to identify the significant cell type and potential biomarkers in IRI. First, we downloaded the IRI related scRNA dataset GSE139506 from the GEO database. Then, classification of cell type was characterized and proximal tubule cell (PTC) was identified as a significant cell type. The functional enrichment analysis indicated that PTC were related to kidney function and is significant in the ferroptosis of IRI. Analyses of three-dimensional structure and iron binding substructure of protein was carried out basing on SWISS-MODEL database. Finally, we constructed the murine model with IRI and verify the higher expression of PHYH in IRI by PCR, Western blot (WB) and Immunohistochemistry (IHC) experiments. In conclusion, this study provided novel insights on the cell-type-specific expression gene biomarker in IRI pathogenesis.
Assuntos
Biologia Computacional , Traumatismo por Reperfusão , Animais , Biomarcadores/metabolismo , Rim/metabolismo , Camundongos , Traumatismo por Reperfusão/patologia , TranscriptomaRESUMO
BACKGROUND: The genus Seseli L., which consists of 125-140 species distributed in the Old World from western Europe and northwestern Africa to China and Japan, is one of the largest and most taxonomically difficult genera of Apiaceae Lindl. Although several previous studies have been conducted on Seseli based on limited morphological characteristics and molecular fragments, a robust and comprehensive phylogeny of Seseli remains elusive. Plastomes provide abundant genetic information and have been widely used in studying plant phylogeny and evolution. Consequently, we newly generated the complete plastomes of eleven Seseli taxa. We combined plastome data and morphological characteristics to investigate the phylogeny of Seseli. RESULTS: In our study, we observed that the genome length, gene numbers, IR/SC borders, and repeat composition of the eleven Seseli plastomes were variable. Several appropriate mutation hotspot regions may be developed as candidate DNA barcodes for evolution, phylogeny, and species identification of Seseli. The phylogenetic results identified that Seseli was not a monophyletic group. Moreover, the eleven newly sequenced Seseli taxa did not cluster with S. tortuosum (the type species of Seseli, belonging to the tribe Selineae), where S. delavayi clustered with Eriocycla belonging to the tribe Echinophoreae and the other ten belonged to Selineae. The comparative plastome and morphological characteristics analyses confirmed the reliability of the phylogenetic analyses and implied the complex evolution of Seseli. CONCLUSION: Combining molecular and morphological data is efficient and useful for studying the phylogeny of Seseli. We suggest that "a narrow sense" of Seseli will be meaningful for further study and the current taxonomic system of Seseli needs to be revised. In summary, our study can provide new insights into the phylogenetic relationships and taxonomic framework of Seseli.
Assuntos
Apiaceae , Filogenia , Apiaceae/genética , Evolução Molecular , Reprodutibilidade dos Testes , Sequência de BasesRESUMO
BACKGROUND: The Peucedanum genus is the backbone member of Apiaceae, with many economically and medically important plants. Although the previous studies on Peucedanum provide us with a good research basis, there are still unclear phylogenetic relationships and many taxonomic problems in Peucedanum, and a robust phylogenetic framework of this genus still has not been obtained, which severely hampers the improvement and revision of taxonomic system for this genus. The plastid genomes possessing more variable characters have potential for reconstructing a robust phylogeny in plants. RESULTS: In the current study, we newly sequenced and assembled seven Peucedanum plastid genomes. Together with five previously published plastid genomes of Peucedanum, we performed a comprehensively comparative analyses for this genus. Twelve Peucedanum plastomes were similar in terms of genome structure, codon bias, RNA editing sites, and SSRs, but varied in genome size, gene content and arrangement, and border of SC/IR. Fifteen mutation hotspot regions were identified among plastid genomes that can serve as candidate DNA barcodes for species identification in Peucedanum. Our phylogenetic analyses based on plastid genomes generated a phylogeny with high supports and resolutions for Peucedanum that robustly supported the non-monophyly of genus Peucedanum. CONCLUSION: The plastid genomes of Peucedanum showed both conservation and diversity. The plastid genome data were efficient and powerful for improving the supports and resolutions of phylogeny for the complex Peucedanum genus. In summary, our study provides new sights into the plastid genome evolution, taxonomy, and phylogeny for Peucedanum species.
Assuntos
Apiaceae/classificação , Apiaceae/genética , Classificação , Evolução Molecular , Genomas de Plastídeos , Filogenia , China , Variação Genética , Tamanho do Genoma , GenótipoRESUMO
MAIN CONCLUSION: Members of Apiales are monophyletic and radiated in the Late Cretaceous. Fruit morphologies are critical for Apiales evolution and negative selection and mutation pressure play important roles in environmental adaptation. Apiales include many foods, spices, medicinal, and ornamental plants, but the phylogenetic relationships, origin and divergence, and adaptive evolution remain poorly understood. Here, we reconstructed Apiales phylogeny based on 72 plastid genes from 280 species plastid genomes representing six of seven families of this order. Highly supported phylogenetic relationships were detected, which revealed that each family of Apiales is monophyletic and confirmed that Pennanticeae is a member of Apiales. Genera Centella and Dickinsia are members of Apiaceae, and the genus Hydrocotyle previously classified into Apiaceae is confirmed to belong to Araliaceae. Besides, coalescent phylogenetic analysis and gene trees cluster revealed ten genes that can be used for distinguishing species among families of Apiales. Molecular dating suggested that the Apiales originated during the mid-Cretaceous (109.51 Ma), with the families' radiation occurring in the Late Cretaceous. Apiaceae species exhibit higher differentiation compared to other families. Ancestral trait reconstruction suggested that fruit morphological evolution may be related to shifts in plant types (herbaceous or woody), which in turn is related to the distribution areas and species numbers. Codon bias and positive selection analyses suggest that negative selection and mutation pressure may play important roles in environmental adaptation of Apiales members. Our results improve the phylogenetic framework of Apiales and provide insights into the origin, divergence, and adaptive evolution of this order and its members.