Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153293

RESUMO

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Assuntos
Ascomicetos , Secale , Secale/genética , Resistência à Doença/genética , Triticum/genética , Proteínas de Repetições Ricas em Leucina , Ascomicetos/fisiologia , Nucleotídeos , Cromossomos de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
2.
BMC Health Serv Res ; 24(1): 756, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907246

RESUMO

BACKGROUND: This study reviews the research status of Diagnosis-related groups (DRGs) payment system in China and globally by analyzing topical issues in this field and exploring the evolutionary trends of DRGs in different developmental stages. METHODS: Abstracts of relevant literature in the field of DRGs were extracted from the China National Knowledge Infrastructure (CNKI) database and the Web of Science (WoS) core database and used as text data. A probabilistic distribution-based Latent Dirichlet Allocation (LDA) topic model was applied to mine the text topics. Topical issues were determined by topic intensity, and the cosine similarity of the topics in adjacent stages was calculated to analyze the topic evolution trend. RESULTS: A total of 6,758 English articles and 3,321 Chinese articles were included. Foreign research on DRGs focuses on grouping optimization, implementation effects, and influencing factors, whereas research topics in China focus on grouping and payment mechanism establishment, medical cost change evaluation, medical quality control, and performance management reform exploration. CONCLUSIONS: Currently, the field of DRGs in China is developing rapidly and attracting deepening research. However, the implementation depth of research in China remains insufficient compared with the in-depth research conducted abroad.


Assuntos
Grupos Diagnósticos Relacionados , China
3.
Plant Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853337

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally-friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA-Seq combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 cM, respectively, corresponding to the bread wheat genome of Chinese Spring (IWGSC RefSeq v2.1) 703.8-707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease resistance breeding.

4.
Angew Chem Int Ed Engl ; 63(13): e202318887, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38237082

RESUMO

Trifluoromethyl cationic carbyne (CF3 C+ :) possessing dual carbene-carbocation behavior emulated as trifluoromethyl metal-carbynoid (CF3 C+ =M) has not been explored yet, and its reaction characteristics are unknown. Herein, a novel α-diazotrifluoroethyl sulfonium salt was prepared and used in Rh-catalyzed three-component [2+1+2] cycloadditions for the first time with commercially available N-fused heteroarenes and nitriles, yielding a series of imidazo[1,5-a] N-heterocycles that are of interest in medicinal chemistry, in which the insertion of trifluoromethyl Rh-carbynoid (CF3 C+ =Rh) into C=N bonds of N-fused heteroarenes was involved. This strategy demonstrates synthetic applications in late-stage modification of pharmaceuticals, construction of CD3 -containing N-heterocycles, gram-scale experiments, and synthesis of phosphodiesterase 10A inhibitor analog. These highly valuable and modifiable imidazo[1,5-a] N-heterocycles exhibit good antitumor activity in vitro, thus demonstrating their potential applications in medicinal chemistry.

5.
J Mol Cell Cardiol ; 174: 63-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436251

RESUMO

Whether long noncoding RNAs participate in the formation of abdominal aortic aneurysms (AAAs) through the regulation of SMC phenotypic switching is unknown. lincRNA-p21 induced by reactive oxygen species (ROS) is likely functionally associated with SMC phenotypic switching. We thus investigated the role of lincRNA-p21 in SMC phenotypic switching-associated AAA formation and its underlying mechanisms. An analysis of human and mouse abdominal aortic samples revealed that the lincRNA-p21 levels were significantly higher in AAA tissue. Stimulation with hydrogen peroxide upregulated the expression of lincRNA-p21 in a dose-dependent manner and converted SMCs from a contractile phenotype to a synthetic, proteolytic, and proinflammatory phenotype in vitro. Moreover, lincRNA-p21 promoted fracture of elastic fibres, reconstruction of the vascular wall, and AAA formation in vivo by modulating SMC phenotypic switching in two mouse models of AAA induced by angiotensin II or porcine pancreatic elastase (PPE) perfusion. Using a bioinformatics prediction method and luciferase reporter gene assays, we further proved that lincRNA-p21 sponged miR-204-5p to release the transcriptional activity of Mekk3 and promoted the NF-κB pathway and thereby played a role in the SMC phenotypic switch and AAA formation. The ROS levels were positively correlated with the lincRNA-p21 levels in human and mouse AAA tissues. The knockdown of lincRNA-p21 in a PPE-induced mouse AAA model increased the miR-204-5p levels and reduced the expression of Mekk3, whereas lincRNA-p21 overexpression had the opposite effect. Collectively, the results indicated that ROS-induced lincRNA-p21 sponges miR-204-5p to accelerate synthetic and proinflammatory SMC phenotypes through the Mekk3/NF-κB pathway in AAA formation. Thus, lincRNA-p21 may have therapeutic potential for AAA formation.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Fenótipo , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
6.
Gene Ther ; 30(1-2): 160-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794468

RESUMO

X-linked retinitis pigmentosa (XLRP) is the most severe form of Retinitis Pigmentosa (RP) and one of the leading causes of blindness in the world. Currently, there is no effective treatment for RP. In the present study, we recruited a XLRP family and identified a 4 bp deletion mutation (c. 2234_2237del) in RPGR ORF15 with Sanger sequencing, which was located in the exact same region as the missing XES (X chromosome exome sequencing) coverage. Then, we generated cell lines harboring the identified mutation and corrected it via enhanced prime editing system (ePE). Collectively, Sanger sequencing identified a pathogenic mutation in RPGR ORF15 for XLRP which was corrected with ePE. This study provides a valuable insight for genetic counseling of the afflicted family members and prenatal diagnosis, also paves a way for applying prime editing based gene therapy in those patients.


Assuntos
Proteínas do Olho , Doenças Genéticas Ligadas ao Cromossomo X , Retinose Pigmentar , Humanos , População do Leste Asiático , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Mutação , Linhagem , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
7.
Plant Biotechnol J ; 21(5): 1073-1088, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36715229

RESUMO

GDP-L-galactose phosphorylase (VTC2) catalyses the conversion of GDP-L-galactose to L-galactose-1-P, a vital step of ascorbic acid (AsA) biosynthesis in plants. AsA is well known for its function in the amelioration of oxidative stress caused by most pathogen infection, but its function against viral infection remains unclear. Here, we have identified a VTC2 gene in wheat named as TaVTC2 and investigated its function in association with the wheat yellow mosaic virus (WYMV) infection. Our results showed that overexpression of TaVTC2 significantly increased viral accumulation, whereas knocking down TaVTC2 inhibited the viral infection in wheat, suggesting a positive regulation on viral infection by TaVTC2. Moreover, less AsA was produced in TaVTC2 knocking down plants (TaVTC2-RNAi) which due to the reduction in TaVTC2 expression and subsequently in TaVTC2 activity, resulting in a reactive oxygen species (ROS) burst in leaves. Furthermore, the enhanced WYMV resistance in TaVTC2-RNAi plants was diminished by exogenously applied AsA. We further demonstrated that WYMV NIb directly bound to TaVTC2 and inhibited TaVTC2 enzymatic activity in vitro. The effect of TaVTC2 on ROS scavenge was suppressed by NIb in a dosage-dependent manner, indicating the ROS scavenging was highly regulated by the interaction of TaVTC2 with NIb. Furthermore, TaVTC2 RNAi plants conferred broad-spectrum disease resistance. Therefore, the data indicate that TaVTC2 recruits WYMV NIb to down-regulate its own enzymatic activity, reducing AsA accumulation to elicit a burst of ROS which confers the resistance to WYMV infection. Thus, a new mechanism of the formation of plant innate immunity was proposed.


Assuntos
Vírus do Mosaico , Triticum , Triticum/genética , Espécies Reativas de Oxigênio , Galactose , Estresse Oxidativo , Vírus do Mosaico/genética , Doenças das Plantas/genética
8.
Toxicol Appl Pharmacol ; 479: 116707, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783235

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), which is a widely used phthalate (PAE), has recently received public attention owing to it causing health problems. The aim of this study was to elucidate the aggravating effects of DEHP on psoriasis and skin toxicity. Human keratinocyte (HaCaT) cells were treated with gradient concentrations of DEHP, and mice with imiquimod (IMQ)-induced psoriasiform dermatitis were hypodermically injected with 40 µg/kg/day of DEHP for seven consecutive days. The skin condition was assessed based on the psoriasis area and severity index score, which indicated the deterioration of IMQ-induced psoriasis-like skin lesions after DEHP exposure. To further analyze the effect of DEHP on psoriasis, the proliferation, inflammation, and tight junction (TJ) damage were examined, which correlated with the development and severity of psoriasis. The results showed that DEHP promoted proliferation both in vivo and in vitro, which manifested as epidermal thickening; an increase in cell viability; upregulation of Ki67, CDK2, cyclinD1, and proliferating cell nuclear antigen; and downregulation of p21. An excessive inflammatory response is an important factor that exacerbates psoriasis, and our results showed that DEHP can trigger the release of inflammatory cytokines as well as the infiltration of T cells. TJ disorders were found in mice and cells after DEHP treatment. Additionally, p38 mitogen-activated protein kinase (MAPK) was strongly activated during this process, which may have contributed to skin toxicity caused by DEHP. In conclusion, DEHP treatment promotes proliferation, inflammation, TJ disruption, and p38 MAPK activation in HaCaT cells and psoriasis-like skin lesions.


Assuntos
Dietilexilftalato , Psoríase , Dermatopatias , Camundongos , Animais , Humanos , Dietilexilftalato/toxicidade , Psoríase/metabolismo , Dermatopatias/induzido quimicamente , Imiquimode/toxicidade , Inflamação/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Pele
9.
Theor Appl Genet ; 136(9): 179, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548696

RESUMO

KEY MESSAGE: Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58-0.66-bin corresponding to 18.38 Mb in Weining rye. Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58-0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23-68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58-0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.


Assuntos
Ascomicetos , Secale , Secale/genética , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Translocação Genética , Doenças das Plantas/genética
10.
Langmuir ; 39(37): 13068-13075, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37678181

RESUMO

We present a facile chemical method for fabricating bioinspired microadhesives with significant improved reversible adhesion strength. Four kinds of polysiloxane with gradient varying phenyl contents were synthesized and used to fabricate microadhesives. The chemical structures and mechanical properties, as well as surface properties of the four microadhesives, were confirmed and characterized by ATR-FTIR, DSC, XPS, low-field NMR, tensile tests, and SEM, respectively. The macroadhesion test results revealed that phenyl contents showed remarkable and positive impacts on the macroadhesion performance of microadhesives. The pull-off adhesion strength of microadhesives with 90% phenyl content (0.851 N/cm2) was nearly 300% higher than that of pure PDMS (0.309 N/cm2). The macroadhesion mechanism analysis demonstrates that a larger bulk energy dissipation caused by massive π-π interaction, as well as the hydrophobic interaction and van der Waals forces at the interface synergistically resulted in a significant enhancement of the adhesion performance. Our results demonstrate the remarkable impact of chemical structures on the adhesion of microadhesives, and it is conducive to the further improvement of adhesion properties of bioinspired microadhesives.

11.
Nature ; 549(7670): 43-47, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28825707

RESUMO

Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.

12.
Plant Dis ; 107(2): 450-456, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35815965

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × 'Shixin 733' mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace 'Fuzhuang 30'. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Mapeamento Cromossômico , Genes Dominantes , Marcadores Genéticos/genética , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Erysiphe/genética
13.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177573

RESUMO

Modal-free optimization algorithms do not require specific mathematical models, and they, along with their other benefits, have great application potential in adaptive optics. In this study, two different algorithms, the single-dimensional perturbation descent algorithm (SDPD) and the second-order stochastic parallel gradient descent algorithm (2SPGD), are proposed for wavefront sensorless adaptive optics, and a theoretical analysis of the algorithms' convergence rates is presented. The results demonstrate that the single-dimensional perturbation descent algorithm outperforms the stochastic parallel gradient descent (SPGD) and 2SPGD algorithms in terms of convergence speed. Then, a 32-unit deformable mirror is constructed as the wavefront corrector, and the SPGD, single-dimensional perturbation descent, and 2SPSA algorithms are used in an adaptive optics numerical simulation model of the wavefront controller. Similarly, a 39-unit deformable mirror is constructed as the wavefront controller, and the SPGD and single-dimensional perturbation descent algorithms are used in an adaptive optics experimental verification device of the wavefront controller. The outcomes demonstrate that the convergence speed of the algorithm developed in this paper is more than twice as fast as that of the SPGD and 2SPGD algorithms, and the convergence accuracy of the algorithm is 4% better than that of the SPGD algorithm.

14.
Plant Dis ; 106(9): 2433-2440, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188419

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease of wheat that seriously affects yield and quality worldwide. Because of the extensive growth of wheat cultivars with homogeneous genetic background, exploring novel resistant resources from wheat relatives has become important for increasing the genetic diversity of wheat. Rye (Secale cereale) is a wheat relative possessing abundant resistance genes because of its high variation. Wheat line AL69, resistant to powdery mildew, was developed by crossing, backcrossing, and self-pollination for multiple generations between hexaploid triticale Zhongsi 237 and common wheat cultivar Zimai 17. Through genomic in situ hybridization (GISH) and multicolor fluorescence in situ hybridization (FISH), nondenaturing FISH, multicolor GISH, and selection with specific molecular markers, AL69 was determined to be a wheat-rye 2R (2D) disomic substitution line. Testing with different B. graminis f. sp. tritici isolates and genetic analysis showed that the all-stage resistance (also called seedling resistance) of AL69 was conferred by the cataloged powdery mildew resistance gene Pm4b derived from Zimai 17, and its adult-plant resistance was derived from the alien chromosome 2R of Zhongsi 237, which was found to be different from the previously reported rye-derived Pm genes, including Pm7 on 2RL. In addition, AL69 showed improved spike number per plant, spike length, fertile spikelet number per spike, kernel number per spike, and grain yield per plant compared with its wheat parent Zimai 17. An elite line S251 combining powdery mildew resistance with excellent agronomic performance was selected from the progenies of AL69 and wheat cultivar Jimai 22. Therefore, AL69 has two types of resistance genes to powdery mildew and improved agronomic traits through pyramiding and thus can be used as a promising genetic stock for wheat breeding.


Assuntos
Secale , Triticum , Cromossomos de Plantas/genética , Resistência à Doença/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Secale/genética , Triticum/genética
15.
Plant Dis ; 106(11): 2940-2947, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35365051

RESUMO

Long-distance dispersal of plant pathogens in the air can establish diseases in other areas and lead to an increased risk of large-scale epidemics. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in China. Hubei is an important overwintering region for Pst in China, and this overwintering region is a determinant of stripe rust severity in eastern China. In 2017, stripe rust disease caused a pandemic in the Hubei region and resulted in great yield losses of wheat. To explain the disease pandemic, a total of 595 single-lesion samples of stripe rust were collected in spring, including 204 in five provinces in 2017 and 391 in four provinces in 2018, and genotyped with 13 simple sequence repeat makers. The samples were classified into 12 subpopulations based on the locations and year of collection. Genetic diversity was determined for the collection and each subpopulation. Differentiation and gene flow were determined between subpopulations. STRUCTURE analyses and discriminant analysis of principal components were conducted, and the results were used to infer the relationships between subpopulations. Our study revealed a new route of Pst transmission from the Yunnan-Guizhou Plateau to the Hubei region. The Pst inoculum of northwestern Hubei came from Gansu in the northwest, whereas the inoculum in southern Hubei came from the Yunnan-Guizhou Plateau via upper airflow. After the initial inocula infected wheat plants and multiplied in northern and southern Hubei, urediniospores produced in these regions further spread together along the middle reach of Hanshui Valley and made exchanges there. The finding of the new transmission route of Pst is important for improving integrated stripe rust disease management, which should have a profound impact on the balance of agricultural ecology in China.


Assuntos
Basidiomycota , Doenças das Plantas , Doenças das Plantas/genética , China , Basidiomycota/genética , Triticum/genética
16.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593888

RESUMO

Metabolic alterations occur in pathogenic infections, but the role of lipid metabolism in the progression of bacterial mastitis is unclear. Cross talk between lipid droplets (LDs) and invading bacteria occurs, and targeting of de novo lipogenesis inhibits pathogen reproduction. In this study, we investigate the role(s) of lipid metabolism in mammary cells during Streptococcus uberis infection. Our results indicate that S. uberis induces the synthesis of fatty acids and production of LDs. Importantly, taurine reduces fatty acid synthesis, the abundance of LDs and the in vitro bacterial load of S. uberis These changes are mediated, at least partly, by the E3 ubiquitin ligase IDOL, which is associated with the degradation of low-density lipoprotein receptors (LDLRs). We have identified a critical role for IDOL-mediated fatty acid synthesis in bacterial infection, and we suggest that taurine may be an effective prophylactic or therapeutic strategy for preventing S. uberis mastitis.


Assuntos
Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus/efeitos dos fármacos , Taurina/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Proteólise , Receptores de LDL
17.
Neuroimage ; 244: 118568, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508895

RESUMO

The annotation of brain lesion images is a key step in clinical diagnosis and treatment of a wide spectrum of brain diseases. In recent years, segmentation methods based on deep learning have gained unprecedented popularity, leveraging a large amount of data with high-quality voxel-level annotations. However, due to the limited time clinicians can provide for the cumbersome task of manual image segmentation, semi-supervised medical image segmentation methods present an alternative solution as they require only a few labeled samples for training. In this paper, we propose a novel semi-supervised segmentation framework that combines improved mean teacher and adversarial network. Specifically, our framework consists of (i) a student model and a teacher model for segmenting the target and generating the signed distance maps of object surfaces, and (ii) a discriminator network for extracting hierarchical features and distinguishing the signed distance maps of labeled and unlabeled data. Besides, based on two different adversarial learning processes, a multi-scale feature consistency loss derived from the student and teacher models is proposed, and a shape-aware embedding scheme is integrated into our framework. We evaluated the proposed method on the public brain lesion datasets from ISBI 2015, ISLES 2015, and BRATS 2018 for the multiple sclerosis lesion, ischemic stroke lesion, and brain tumor segmentation respectively. Experiments demonstrate that our method can effectively leverage unlabeled data while outperforming the supervised baseline and other state-of-the-art semi-supervised methods trained with the same labeled data. The proposed framework is suitable for joint training of limited labeled data and additional unlabeled data, which is expected to reduce the effort of obtaining annotated images.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Esclerose Múltipla/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética , Projetos de Pesquisa , Estudantes
18.
Plant Dis ; 105(10): 2830-2835, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33881919

RESUMO

In the main wheat production area of China (the Huang Huai Plain [HHP]), both Fusarium graminearum and Fusarium asiaticum, the causal agents of Fusarium head blight (FHB), are present. We investigated whether the relative prevalence of F. graminearum and F. asiaticum is related to cropping systems and/or climate factors. A total of 1,844 Fusarium isolates were obtained from 103 fields of two cropping systems: maize-wheat and rice-wheat rotations. To maximize the differences in climatic conditions, isolates were sampled from the north and south HHP regions. Based on the phylogenetic analysis of EF-1α and Tri101 sequences, 1,207 of the 1,844 isolates belonged to F. graminearum, and the remaining 637 isolates belonged to F. asiaticum. The former was predominant in the northern region: 1,022 of the 1,078 Fusarium isolates in the north were F. graminearum. The latter was predominant in the southern region: 581 of the 766 Fusarium isolates belonged to F. asiaticum. Using an analysis based on generalized linear modeling, the relative prevalence of the two species was associated more with climatic conditions than with the cropping system. F. graminearum was associated with drier conditions and cooler conditions during the winter but also with warmer conditions in the infection and grain-colonization period as well as with maize-wheat rotation. The opposite was true for F. asiaticum. Except for the 15-acetyldeoxynvalenol genotype, the trichothecene chemotype composition of F. asiaticum differed between the two cropping systems. The 3-acetyldeoxynivalenol genotype was more prevalent in the maize-wheat rotation, whereas the nivalenol genotype was more prevalent in the rice-wheat rotation. The results also suggested that environmental conditions in the overwintering period appeared to be more important than those in the infection, grain-colonization, and preanthesis sporulation periods in affecting the relative prevalence of F. graminearum and F. asiaticum. More research is needed to study the effect of overwintering conditions on subsequent epidemic in the following spring.


Assuntos
Agricultura/métodos , Clima , Fusarium , Doenças das Plantas/microbiologia , Triticum/microbiologia , China , Fusarium/genética , Filogenia
19.
Plant Dis ; 104(9): 2411-2417, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32658634

RESUMO

Chinese wheat landrace Youbailan has excellent resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. In the present study, genetic analysis indicated that a recessive gene, tentatively designated pmYBL, was responsible for the powdery mildew resistance of Youbailan. pmYBL was located in the 695-to-715-Mb genomic region of chromosome 7BL, with 19 gene-linked single-nucleotide polymorphism (SNP) markers. It was flanked by SNP1-12 and SNP1-2 with genetic distances of 0.6 and 1.8 centimorgans, respectively. The disease reaction patterns of Youbailan and four cultivars (lines) carrying the powdery mildew (Pm) genes located on chromosome arm 7BL indicated that pmYBL may be allelic or closely linked to these genes. All of the SNP markers linked to pmYBL were diagnostic, indicating that these markers will be useful for pyramiding pmYBL using marker-assisted selection.


Assuntos
Resistência à Doença/genética , Triticum/genética , Mapeamento Cromossômico , Genes de Plantas , Humanos , Doenças das Plantas
20.
Plant Dis ; 104(4): 1231-1238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065563

RESUMO

Powdery mildew, which is caused by Blumeria graminis f. sp. tritici (Bgt), is a disease of wheat worldwide. Xiaobaidong is a Chinese wheat landrace, which still maintains good resistance against powdery mildew. To obtain more genetic markers closely linked to the powdery mildew resistance gene mlxbd and narrow the candidate region for its isolation, new simple sequence repeats and cross intron-spanning markers were designed based on the genome sequence of Triticum aestivum cultivar Chinese Spring chromosome 7BL. The flanking markers 7BLSSR49 and WGGC5746 were found to be tightly linked to mlxbd at genetic distances of 0.4 cM and 0.3 cM, respectively. The resistance locus was mapped to a 63.40 kb and 0.29 Mb region of the Chinese Spring genome and Zavitan genome, respectively. The linked markers of mlxbd could be used as diagnostic markers for mlxbd. The linked molecular markers and delineated genomic region in the sequenced Chinese Spring genome will assist the future map-based cloning of mlxbd.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Genes de Plantas , Humanos , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA