Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chin J Dent Res ; 27(2): 133-141, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38953478

RESUMO

OBJECTIVE: To find efficient cuproptosis-related biomarkers to explore the oncogenesis and progression of oral squamous cell carcinoma (OSCC). METHODS: All the original data were downloaded from the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and Kaplan-Meier survival analysis were used to identify the gene related to survival. Tumor Immune Estimation Resource 2.0 (TIMER 2.0) was used to reveal the different expression of cuproptosis-related gene lipoyltransferase 1 (LIPT1) in various kinds of tumours. RESULTS: LIPT1, as a cuproptosis-related gene, was found to be differentially expressed in the OSCC group and the control group. It was also found to be related to the prognosis of OSCC. Pan cancer analysis showed LIPT1 was also involved in various kinds of tumours. CONCLUSION: All the results demonstrate that the cuproptosis-related gene LIPT1 is highly involved in the oncogenesis and progression of OSCC. These findings give new insight for further research into the cuproptosis-related biomarkers in OSCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Prognóstico , Aciltransferases/genética , Estimativa de Kaplan-Meier
2.
Sci Robot ; 9(91): eadi2377, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865477

RESUMO

Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.


Assuntos
Desenho de Equipamento , Amplitude de Movimento Articular , Robótica , Ombro , Torque , Dispositivos Eletrônicos Vestíveis , Humanos , Robótica/instrumentação , Fenômenos Biomecânicos , Masculino , Ombro/fisiologia , Adulto , Amplitude de Movimento Articular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/instrumentação , Indústrias/instrumentação , Lesões do Ombro/prevenção & controle , Feminino , Adulto Jovem , Análise e Desempenho de Tarefas , Articulação do Ombro/fisiologia , Exoesqueleto Energizado
3.
Materials (Basel) ; 17(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793520

RESUMO

Magnesium matrix composites are essential lightweight metal matrix composites, following aluminum matrix composites, with outstanding application prospects in automotive, aerospace lightweight and biomedical materials because of their high specific strength, low density and specific stiffness, good casting performance and rich resources. However, the inherent low plasticity and poor fatigue resistance of magnesium hamper its further application to a certain extent. Many researchers have tried many strengthening methods to improve the properties of magnesium alloys, while the relationship between wear resistance and plasticity still needs to be further improved. The nanoparticles added exhibit a good strengthening effect, especially the ceramic nanoparticles. Nanoparticle-reinforced magnesium matrix composites not only exhibit a high impact toughness, but also maintain the high strength and wear resistance of ceramic materials, effectively balancing the restriction between the strength and toughness. Therefore, this work aims to provide a review of the state of the art of research on the matrix, reinforcement, design, properties and potential applications of nano-reinforced phase-reinforced magnesium matrix composites (especially ceramic nanoparticle-reinforced ones). The conventional and potential matrices for the fabrication of magnesium matrix composites are introduced. The classification and influence of ceramic reinforcements are assessed, and the factors influencing interface bonding strength between reinforcements and matrix, regulation and design, performance and application are analyzed. Finally, the scope of future research in this field is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA