Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
IUBMB Life ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822621

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that can actively participate in post-transcriptional regulation of genes. A number of studies have shown that miRNAs can serve as important regulators of cancer cell growth, differentiation, and apoptosis. They can also act as markers for the diagnosis and prognosis of certain cancers. To explore the potential prognosis-related miRNAs in liver cancer patients, to provide theoretical basis for early diagnosis and prognosis of liver cancer, as well as to provide a new direction for the targeted therapy of liver cancer. The miRNA expression profiles of liver cancer patients in the the Cancer Genome Atlas database were comprehensively analyzed and various prognostic-related miRNAs of liver cancer were screened out. The data was further subjected to survival analysis, prognostic analysis, gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis, microenvironment analysis, and drug sensitivity analysis by R Language version 4.2.0. Finally, the screened miRNAs were further validated by different experiments. Thus, miNRAs involved in liver cancer diagnosis and prognosis were identified. MiRNA-3680-3p was found to be significantly different in 10 different cancers, including liver cancer, and was significantly associated with the microenvironment, survival, and prognosis of liver cancer patients. In addition, drug sensitivity analysis revealed that miRNA-3680-3p can provide a useful reference for drug selection in targeted therapy for liver cancer. MiRNA-3680-3p can serve as a biomarker for the diagnosis and prognosis of liver cancer patients and down-regulation of miRNA-3680-3p could significantly inhibit both the proliferation and migration of liver cancer cells.

2.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046181

RESUMO

In recent years, flexible perovskite solar cells have drawn tremendous attention in the field of wearable devices, and optimization of perovskite composition plays an important role in improving film quality and photophysical properties. At present, some researchers have only studied A-site organic cations mixing or X-site halide anions mixing in the ABX3 structure of perovskite, but there are few reports on co-mixing of A-site and X-site ions in flexible perovskite solar cells. In this paper, we mainly try to study the effects of different concentrations of mixed formamidine methylamine halide (FAxMA1-xBrxClyI1-x-y) precursor solutions on the quality and photophysical properties of perovskite films under low temperature process. We conclude that the film quality and photophysical properties reached the best results when the optimized precursor solution concentration was 60:6:6. The investigation on composition optimization in this experiment laid the foundation for the improvement of the performance of flexible perovskite solar cells. We also use the results of this experiment to prepare flexible perovskite solar cells based on carbon electrodes, which are expected to be applied in other flexible optoelectronic or electro-optical devices.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Energia Solar , Titânio/química , Amidinas/química , Carbono/química , Temperatura Baixa , Eletrodos , Metilaminas/química
3.
Molecules ; 24(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587800

RESUMO

Cells are the smallest living units of a human body's structure and function, and their behaviors should not be ignored in human physiological and pathological metabolic activities. Each cell has a different scale, and presents distinct responses to specific scales: Vascular endothelial cells may obtain a normal function when regulated by the 25 µm strips, but de-function if the scale is removed; stem cells can rapidly proliferate on the 30 nm scales nanotubes surface, but stop proliferating when the scale is changed to 100 nm. Therefore, micro and nano scales play a crucial role in directing cell behaviors on biomaterials surface. In recent years, a series of biomaterials surface with micro and/or nano scales, such as micro-patterns, nanotubes and nanoparticles, have been developed to control the target cell behavior, and further enhance the surface biocompatibility. This contribution will introduce the related research, and review the advances in the micro/nano scales for biomaterials surface functionalization.


Assuntos
Materiais Biocompatíveis/análise , Materiais Biocompatíveis/química , Fenômenos Fisiológicos Celulares , Nanoestruturas , Propriedades de Superfície , Animais , Técnicas de Cultura de Células , Humanos , Teste de Materiais , Nanotecnologia
4.
Cell Cycle ; 23(4): 353-368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38547309

RESUMO

MiRNAs play crucial regulatory roles in the growth and development of tumor cells by serving as carriers of post-transcriptional regulatory information derived from genes. Investigating the potential function and clinical significance of miRNA-mediated mRNA regulatory networks in liver cancer can offer novel insights and therapeutic strategies for the treatment of this disease. We identified 300 differentially expressed miRNAs, and five miRNAs were identified to be correlated with overall survival and could be used as an independent prognostic. GO enrichment analysis mainly included carboxylic acid biosynthesis, organic acid biosynthesis, peroxisomal membrane, microsomal membrane, DNA binding, C-acyltransferase activity, etc. KEGG enrichment analysis showed that the pathways of target genes related to liver cancer were mainly focused on butyric acid metabolism and partial amino acid metabolism. Eight of the top 10 HUB genes were associated with prognosis, and the expression of four genes was positively correlated with prognosis, of which ABAT, BHMT, and SHMT1 were target genes of hsa-miR-5003-3p. MiR-5003-3p inhibits ABAT/BHMT/SHMT1 expression, thereby promoting liver cancer development. Overall, our study provides new ideas for the treatment of liver cancer, and these five miRNAs may be independent prognostic biomarkers and therapeutic targets for liver cancer patients. And miR-5003-3p may be a critical factor in the mechanism of liver cancer development.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Hepáticas , MicroRNAs , RNA Mensageiro , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Masculino , Perfilação da Expressão Gênica
5.
Materials (Basel) ; 14(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923298

RESUMO

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.

6.
Materials (Basel) ; 13(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106412

RESUMO

Flexible perovskite solar cells (PSCs) have received increasing attention in wearable and portable devices over the past ten years. The low-temperature process of electron transport layer plays a key role in fabricating flexible PSCs. In this paper, we improve the performance of flexible PSCs by controlling the thermodynamic procedure in the low-temperature annealing process of solution-processed TiO2 layers and modulating the precursor concentration of (6,6)-phenyl c61 butyric acid methyl ester (PC61BM) deposited on fluorine-doped tin oxide (FTO)/TiO2 substrate. The results show that slowing down evaporation rate of residual solvent and adopting PC61BM of appropriate precursor concentration are confirmed to be effective methods to improve the performance of flexible PSCs. We also demonstrate carbon electrode-based flexible PSCs. Our work expands the feasibility of low temperature process for the development of flexible perovskite photodetectors and light-emitting diodes, as well as flexible PSCs.

7.
Materials (Basel) ; 13(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429060

RESUMO

The film quality of the electron transport layer (ETL) plays an important role in improving the performance of perovskite solar cells (PSCs). In order to reduce the effect of rough fluorine-doped SnO2 (FTO)substrate on the film quality of the TiO2 ETL, multiple cycles of spin-coating were employed to realize optimized TiO2 film and improve the performance of PSCs with rough FTO. The results show that TiO2 ETL was optimized most effectively using two spin-coating cycles, obtaining the best performance of PSCs with rough FTO. The carbon electrode-based PSCs were then demonstrated. Our work discusses the feasibility of low-quality rough FTO for the fabrication of PSCs and photodetectors to reduce costs.

8.
Aging (Albany NY) ; 11(17): 7123-7149, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31495785

RESUMO

Polycomb group (PcG) proteins have recently been identified as critical regulators in tumor initiation and development. However, the function of CBX8 in human hepatocellular carcinoma (HCC) remains largely unknown. Our study was designed to explore the biological function and clinical implication of CBX8 in HCC. We investigated the interplay between CBX8 and cell cycle through Gene Set Enrichment Analysis and western blotting. Bioinformatics tools and co-immunoprecipitation were used to explore cell cycle regulation. Finally, we studied the expression and clinical significance of CBX8 in HCC through 3 independent datasets. CBX8 was upregulated in HCC and its expression correlated with cell cycle progression. CyclinD1 was downregulated by CBX8 knockdown but upregulated by CBX8 overexpression. YBX1 interacted with CBX8 and regulated the cell cycle. Moreover, targeting YBX1 with specific siRNA impaired CBX8-mediated regulation of CyclinD1. CBX8 overexpression boosted HCC cell growth, while CBX8 knockdown suppressed cell proliferation. Further, YBX1 interacted with CBX8. YBX1 knockdown compromised the proliferation of CBX8 overexpressing cells. CBX8 promotes HCC cell proliferation through YBX1 mediated cell cycle progression and is related to poor HCC prognoses. Therefore, CBX8 may serve as a potential target for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ciclina D1/metabolismo , Neoplasias Hepáticas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Carcinoma Hepatocelular/mortalidade , Estudos de Casos e Controles , Ciclo Celular , Proliferação de Células , Estudos de Coortes , Humanos , Neoplasias Hepáticas/mortalidade , Complexo Repressor Polycomb 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA