Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(2-3): 943-954, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36625912

RESUMO

Many fungi are able to produce extracellular polymeric substances (EPS) for environmental, food, and industrial applications. This study evaluated the extraction (in vivo) of EPS from Rhodotorula mucilaginosa, a typical yeast with abundant EPS. Three extracting methods were set, i.e., heating, addition of NaCl during heating, and cation exchange resin (CER). The abundance of extracted proteins and polysaccharides showed evident contrasts (elevated to ~ 600 and 1700 mg/L, respectively) after heating at 70 °C in water. Although the higher temperature will increase the extracted abundance of EPS, the leakage of DNA would be enhanced due to cell rupture. The addition of NaCl further promoted the efficiency of extraction, either for proteins (from ~ 550 to ~ 650 mg/L) or polysaccharides (from ~ 1700 to ~ 2010 mg/L). Moreover, the biochemical results showed that the extracted abundance of EPS via heating was dramatically higher than that via CER. Additionally, DNA leakage in the CER treatment (2.0 g/g DW) was significantly higher (up to > 6 mg/L) than that under heating at 70 °C (< 2 mg/L). Furthermore, the three-dimensional excitation-emission matrix spectra showed two characteristic peaks of emission/excitation wavelength at 280/300 and 280/350, suggesting the relative high diversity of organic matters in EPS after heating treatments. Finally, a fluctuation of polysaccharide abundance in EPS at 500-1500 mg/L Pb2+ level was elucidated by the extraction based on heating treatment. This study hence confirmed that the heating method might be recommended for extraction of EPS from fungi in vivo KEY POINTS: • 3D-EEM results indicated that heating could extract more EPS compared with CER. • Heating treatments showed lower DNA leakage from fungi than CER treatments. • Addition of NaCl promoted the detachment of EPS from fungal cells in vivo.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Sódio , Polissacarídeos , Proteínas , Fungos , Esgotos/química
2.
Appl Microbiol Biotechnol ; 105(16-17): 6477-6488, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34424384

RESUMO

Co-existence of toxic metals causes complex toxicity to microorganisms during bioremediation in water and soil. This study investigated the immobilization of Pb2+ and Cd2+ by fungus Aspergillus niger, which has been widely applied to environmental remediation. Five treatments were set, i.e., CK (no toxic metals), Pb2+ only, Cd2+ only, Pb2+/Cd2+ = 1:1(molar ratio), and Pb2+/Cd2+ = 2:1. Cadmium induced strong toxicity to the fungus, and maintained the high toxicity during incubation. However, as Pb/Cd ratio increased from 0 to 2, the removal rates of Cd2+ by A. niger were raised from 30 to 50%. The elevated activities of pyruvate dehydrogenase (PDH) and citrate synthetase (CS) enzymes confirmed that Pb addition could stimulate the growth of A. niger. For instance, citric acid concentrations and CS activities were 463.22 mg/L and 78.37 nmol/min/g, respectively, during 3-day incubation as Pb/Cd = 1. However, these two values were as low as ~ 50 with addition of only Cd. It was hence assumed that appropriate co-existence of Pb2+ enhanced microbial activity by promoting TCA cycle of the fungus. Moreover, the SEM analysis and geochemical modeling demonstrated that Pb2+ cations were more easily adsorbed and mineralized on A. niger with respect to Cd2+. Therefore, instead of intensifying metal toxicity, the addition of appropriate Pb actually weakened Cd toxicity to the fungus. This study sheds a bright future on application of A. niger to the remediation of polluted water with co-existence of Pb and Cd. KEY POINTS: • Cd2+ significantly inhibited P consumption, suggesting its high toxicity to A. niger. • Pb2+ stimulated the growth of A. niger by promoting TCA cycle in the cells. • Cd2+ removal by A. niger were improved with co-existence of Pb2+.


Assuntos
Aspergillus niger , Cádmio , Bioacumulação , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Chumbo/toxicidade
3.
Food Chem ; 438: 138067, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38039865

RESUMO

In this study, figs were irradiated with X-rays doses of 1.0, 3.0, and 5.0 kGy and stored at 4 °C for 20 d to evaluate effects of X-ray on redox homeostasis and energy metabolism in figs. Non-irradiated figs were recorded as control group. Results indicated that 3.0 kGy X-rays delayed fig color discoloration by inhibiting the ΔE* values. The electrolyte leakage, MDA and O2-· levels of figs were significantly alleviated. Energy metabolism assay revealed that 3.0 kGy X-rays could significantly maintain higher activities of H+-ATPase, Ca2+-ATPase, SDH, CCO, G6PDH and 6PGDH of figs. 3.0 kGy X-rays also retained mitochondria membrane integrity of figs. Furthermore, 3.0 kGy X-rays resulted in 26.09 % higher NADK activity and 16.30 % lower NADH content than the control. The study proves that X-ray irradiation can be used as figs preservation means to maintain redox homeostasis and regulate energy metabolism, thus lengthening the shelf life of figs.


Assuntos
Ficus , Raios X , Oxirredução
4.
Foods ; 10(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34441628

RESUMO

Currently, thermal pasteurisation (TP) remains the most widely applied technique for commercial orange juice preservation; however, a high temperature causes adverse effects on the quality attributes of orange juice. In order to explore a novel non-thermal sterilization method for orange juice, the impacts of thermosonication combined with nisin (TSN) and TP treatments on the quality attributes including microbial and enzyme inactivation and the physicochemical, nutritional, functional, and sensory qualities of orange juice were studied. Both TP and TSN treatments achieved desirable bactericidal and enzyme inactivation effects, and nisin had a significant synergistic lethal effect on aerobic bacteria in orange juice (p < 0.05). Additionally, TSN treatment significantly improved the color attributes of orange juice and well maintained its physicochemical properties and sensory quality. More importantly, TSN treatment significantly increased the total polyphenols content (TPC) and total carotenoids (TC) by 10.03% and 20.10%, increased the ORAC and DPPH by 51.10% and 10.58%, and the contents of total flavonoids and ascorbic acid were largely retained. Correlation analysis of antioxidant activity showed that the ORAC and scavenging ability of DPPH radicals of orange juice are mainly attributed to TC and TPC. These findings indicate that TSN shows great potential application value, which could guarantee the microbiological safety and improve the quality attributes of orange juice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA