Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 147(1): 45-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798336

RESUMO

BACKGROUND: Immune system stimulation (ISS) adversely affects protein metabolism and reduces pig productivity. Leu has a regulatory role in skeletal muscle and whole-body protein turnover, which may be affected by ISS. OBJECTIVE: We sought to determine the effect of supplemental Leu intake on whole-body protein turnover in pigs before and during ISS. METHODS: Pigs [mean ± SD initial body weight (BW): 10.6 ± 1.1 kg] were surgically fitted with jugular vein catheters and assigned to 1 of 3 treatments: 1.36% standardized ileal-digestible (SID) Leu (CON; n = 13); 2.04% SID Leu (LEU-M; n = 8); and 2.72% SID Leu (LEU-H; n = 7). Pigs were infused continuously with 0.66 ± 0.05 mmol 15N ⋅ kg BW-1 ⋅ d-1 to determine whole-body protein kinetics. The study consisted of a 72-h prechallenge period followed by a 36-h challenge period. At the start of the challenge period, ISS was induced in all LEU-M and LEU-H pigs and half of the CON pigs with LPS (ISS+); the remaining CON pigs were administered saline (ISS-). RESULTS: Whole-body protein synthesis (309, 273, and 260 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) and protein degradation (233, 203, and 185 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) were reduced with increasing Leu intake during the prechallenge period (P < 0.05). ISS reduced whole-body protein synthesis (203 compared with 169 ± 12 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.05) and protein deposition (PD) (64.9 compared with 45.0 ± 2.9 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.01), whereas ISS did not affect whole-body protein degradation. Leu intake did not affect whole-body protein synthesis or degradation in ISS+ pigs. CONCLUSIONS: Our results indicate that supplemental Leu intake improves the efficiency of PD rather than PD directly in healthy pigs but did not affect whole-body protein turnover during ISS.


Assuntos
Leucina/administração & dosagem , Lipopolissacarídeos/toxicidade , Proteínas/metabolismo , Suínos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Isótopos de Nitrogênio
2.
J Nutr ; 147(12): 2228-2234, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29021372

RESUMO

Background: Including ammonia in low-crude protein (CP) diets deficient in dispensable amino acid (DAAs) increases nitrogen retention in growing pigs.Objective: We investigated the absorption and metabolism of dietary ammonia nitrogen in the portal-drained viscera (PDV) and liver of pigs fed a diet deficient in DAA nitrogen.Methods: Eight pigs with an initial mean ± SD body weight (BW) of 26.5 ± 1.4 kg were surgically fitted with 4 catheters each (portal, hepatic and mesenteric veins, and carotid artery). The pigs were fed (2.8 × 191 kcal/kg BW0.60), for 7 d and every 8 h, a diet deficient in DAA nitrogen supplemented with increasing amounts of ammonia nitrogen (CP: 7.76%, 9.27%, and 10.77%; indispensable amino acid nitrogen:total nitrogen ratio: 0.71, 0.59, and 0.50 for control and low- and high-ammonia diets, respectively). The treatment sequence was based on a Latin square design with 3 consecutive periods. On the last day of each period, blood flows in the portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Serial blood samples were taken to determine ammonia and urea nitrogen concentration. Net balances of ammonia and urea nitrogen were calculated for the PDV and liver.Results: Cumulative (8 h) ammonia nitrogen appearance in the portal vein increased (P ≤ 0.05) with ammonia intake (433, 958, and 1629 ± 60 mg ammonia nitrogen/meal for control and low- and high-ammonia diets, respectively). The cumulative hepatic uptake of ammonia nitrogen increased (P ≤ 0.05) with ammonia nitrogen supply. The cumulative urea nitrogen appearance in the hepatic vein tended to increase (P ≤ 0.10) only in high-ammonia treatment (-92.5, -59.4, and 209.7 ± 92 mg urea nitrogen/meal for control and low- and high-ammonia diets, respectively) and, relative to the control diet, represented -6.0% and 11% of ammonia nitrogen intake.Conclusion: Dietary ammonia nitrogen is poorly utilized for urea production across splanchnic organs when pigs are fed diets deficient in DAA nitrogen.


Assuntos
Aminoácidos/química , Amônia/química , Amônia/metabolismo , Ração Animal/análise , Suínos/crescimento & desenvolvimento , Ureia/metabolismo , Animais , Dieta/veterinária , Masculino
3.
J Nutr ; 139(6): 1088-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19403708

RESUMO

Although amino acids (AA) synthesized by enteric microbiota in the upper gut of nonruminants can be absorbed, they do not necessarily make a net contribution to the host's AA supply. That depends on whether protein or nonprotein nitrogen sources are used for microbial protein production. We determined the contributions of urea, endogenous protein (EP), and dietary protein (DP) to microbial valine (M.VAL) at the distal ileum of growing pigs, based on isotope dilutions after a 4-d continuous infusion of l-[1-(13)C]valine to label EP and of [(15)N(15)N]urea. Eight barrows were assigned to either a cornstarch and soybean meal-based diet with or without 12% added fermentable fiber from pectin. Dietary pectin did not affect (P > 0.10) the contributions of the endogenous and DP to M.VAL. More than 92% of valine in microbial protein in the upper gut was derived from preformed AA from endogenous and DP, suggesting that de novo synthesis makes only a small contribution to microbial AA.


Assuntos
Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Suínos/metabolismo , Animais , Carbono , Dieta/veterinária , Fermentação , Conteúdo Gastrointestinal/química , Conteúdo Gastrointestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Nitrogênio , Compostos de Amônio Quaternário
4.
J Anim Sci ; 97(2): 829-838, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476328

RESUMO

Immune system stimulation (ISS) adversely affects protein and AA metabolism and reduces productivity in pigs. Leucine (Leu) has a regulatory role in skeletal muscle protein turnover, which may be affected by ISS. The objective of this study was to evaluate the effects of ISS and dietary Leu supplementation on the protein fractional synthesis rate (FSR) of various tissues in pigs. Yorkshire barrows were surgically fitted with jugular vein catheters and assigned to one of three dietary treatments: (i) CON, 1.36% standardized ileal digestible (SID) Leu; (ii) LEU-M, 2.04% SID Leu; and (iii) LEU-H, 2.72% SID Leu. The diets were formulated to contain all essential AA 10% above estimated requirements for maximum whole-body protein deposition for this BW range. At the start of the 36-h challenge period (initial BW = 14.5 ± 0.8 kg), ISS was induced in pigs with lipopolysaccharide (ISS+; n = 7, 8, and 7 for CON, LEU-M, and LEU-H pigs, respectively); a subset of CON pigs was injected with sterile saline (ISS-; n = 6). During challenge period, pigs were fed every 4 h and feed intake of ISS- pigs was kept equal to ISS+ pigs. At the end of the challenge period, FSR of liver, plasma, gastrocnemius, and LD proteins were determined with a flooding dose of l-[ring-2H5]phenylalanine (40 mol%). All essential AA, most nonessential AA, and plasma urea-N peaked at 12 h and declined to baseline levels at 36 h after ISS was induced in ISS+ pigs (P < 0.05), whereas plasma AA and urea-N concentrations were constant in ISS- pigs. At 36 h, dietary Leu supplementation resulted in a linear decline in plasma isoleucine, valine, glutamine, and urea nitrogen concentrations (P < 0.05), whereas plasma Leu concentration was unaffected. Liver protein FSR was increased in ISS+ pigs (P < 0.05), whereas plasma and skeletal muscle protein FSR was not affected by ISS. Dietary Leu supplementation tended to diminish liver protein FSR (linear reduction; P = 0.052) and increase gastrocnemius protein FSR (linear increase; P = 0.085) in ISS+ pigs. Leucine supplementation above estimated requirements may support repartitioning of AA from visceral to peripheral protein deposition during ISS.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aminoácidos/farmacologia , Ração Animal/análise , Leucina/farmacologia , Suínos , Adjuvantes Imunológicos/administração & dosagem , Aminoácidos/administração & dosagem , Aminoácidos/sangue , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Nitrogênio da Ureia Sanguínea , Dieta/veterinária , Íleo/metabolismo , Leucina/administração & dosagem , Leucina/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA