Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101550, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973333

RESUMO

The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.


Assuntos
Fosfotransferases (Fosfomutases) , Plasmodium falciparum , Proteínas de Protozoários , Animais , Eritrócitos/parasitologia , Glicosilfosfatidilinositóis/metabolismo , Humanos , Malária Falciparum/parasitologia , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
J Inherit Metab Dis ; 43(4): 861-870, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32057119

RESUMO

Missense variants of human phosphoglucomutase 1 (PGM1) cause the inherited metabolic disease known as PGM1 deficiency. This condition is categorised as both a glycogen storage disease and a congenital disorder of glycosylation. Approximately 20 missense variants of PGM1 are linked to PGM1 deficiency, and biochemical studies have suggested that they fall into two general categories: those affecting the active site and catalytic efficiency, and those that appear to impair protein folding and/or stability. In this study, we characterise a novel variant of Arg422, a residue distal from the active site of PGM1 and the site of a previously identified disease-related variant (Arg422Trp). In prior studies, the R422W variant was found to produce insoluble protein in a recombinant expression system, precluding further in vitro characterisation. Here we investigate an alternative variant of this residue, Arg422Gln, which is amenable to experimental characterisation presumably due to its more conservative physicochemical substitution. Biochemical, crystallographic, and computational studies of R422Q establish that this variant causes only minor changes in catalytic efficiency and 3D structure, but is nonetheless dramatically reduced in stability. Unexpectedly, binding of a substrate analog is found to further destabilise the protein, in contrast to its stabilising effect on wild-type PGM1 and several other missense variants. This work establishes Arg422 as a lynchpin residue for the stability of PGM1 and supports the impairment of protein stability as a pathomechanism for variants that cause PGM1 deficiency. SYNOPSIS: Biochemical and structural studies of a missense variant far from the active site of human PGM1 identify a residue with a key role in enzyme stability.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio/genética , Fosfoglucomutase/química , Conformação Proteica , Arginina/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glucose/química , Doença de Depósito de Glicogênio/metabolismo , Humanos , Mutação de Sentido Incorreto , Fosfoglucomutase/genética , Dobramento de Proteína
3.
J Org Chem ; 84(15): 9627-9636, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264865

RESUMO

α-Phosphomannomutase/phosphoglucomutase (αPMM/PGM) from P. aeruginosa is involved in bacterial cell wall assembly and is implicated in P. aeruginosa virulence, yet few studies have addressed αPMM/PGM inhibition from this important Gram-negative bacterial human pathogen. Four structurally different α-d-glucopyranose 1-phosphate (αG1P) derivatives including 1-C-fluoromethylated analogues (1-3), 1,2-cyclic phosph(on)ate analogues (4-6), isosteric methylene phosphono analogues (7 and 8), and 6-fluoro-αG1P (9), were synthesized and assessed as potential time-dependent or reversible αPMM/PGM inhibitors. The resulting kinetic data were consistent with the crystallographic structures of the highly homologous Xanthomonas citri αPGM with inhibitors 3 and 7-9 binding to the enzyme active site (1.65-1.9 Å). These structural and kinetic insights will enhance the design of future αPMM/PGM inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfoglucomutase/antagonistas & inibidores , Fosfotransferases (Fosfomutases)/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Fosfatos Açúcares/síntese química , Fosfatos Açúcares/química
4.
J Org Chem ; 81(19): 8816-8825, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27576508

RESUMO

Eight fluorinated isosteric α-d-glucopyranosyl 1-phosphate (Glc 1P) analogues have been synthesized. A promiscuity investigation of the thymidylyltransferase Cps2L and the guanidylyltansferase GDP-ManPP with these analogues showed that all were accepted by either enzyme, with the exception of 1,6-diphosphate 6. Kinetic parameters were determined for these analogues using a continuous coupled assay. These data demonstrated the broad substrate promiscuity of Cps2L, with kcat/Km changes for monofluoro substitution at C-2, C-4, and C-6 and difluoro substitution at C-2 within two orders of magnitude. In contrast, the kinetic analysis of GDP-ManPP was only possible with three out of eight analogues. The pKa2 values of analogues (1-3) were determined by proton decoupled 31P and 19F NMR titration experiments. Counterintuitively, the axial fluoro substituent in 3 did not change chemical shift upon titration, and there was no significant increase in acidity for the difluoro analogue over the monofluoro analogues. No strong Brønsted linear free-energy correlations were observed among all five substrates (1-3, Glc 1P, and Man 1P) for either enzyme-catalyzed reactions. However, Brønsted correlations were observed among selected substrates, indicating that the acidity of the nucleophilic phosphate and the configuration of the hexose each plays a significant role in determining the substrate specificity.


Assuntos
Guanidina/química , Nucleotidiltransferases/química , Fosfatos/síntese química , Timidina/química , Catálise , Cromatografia Líquida de Alta Pressão , Cinética , Espectroscopia de Ressonância Magnética , Fosfatos/química , Especificidade por Substrato
5.
J Org Chem ; 78(20): 10298-309, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24032658

RESUMO

Pochonicine, the first naturally occurring polyhydroxylated pyrrolizidine containing an acetamidomethyl group, which was isolated from Pochonia suchlasporia var. suchlasporia TAMA 87, together with its enantiomer and their C-1 and/or C-3 epimers, have been synthesized from the sugar-derived cyclic nitrones 9D and 9L, respectively. An in-depth NMR study showed that both the (1)H and (13)C NMR spectra of the synthetic pochonicines (1D and 1L) matched very well with those of natural pochonicine in D2O, which unequivocally determined the relative configuration of the natural product as 1D or 1L. In addition, comparison of the optical rotations of the synthetic pochonicines and that of the natural product, but more convincingly their glycosidase inhibition profiles, confirmed the absolute configuration of natural pochonicine as 1R,3S,5R,6R,7S,7aR. Thereby, the structure of natural pochonicine was unequivocally determined as (+)-(1R,3S,5R,6R,7S,7aR)-pochonicine (1D). Glycosidase inhibition experiments showed that natural pochonicine 1D and its epimers 2D, 3D, and 4D all are powerful inhibitors of hexosaminidases (five ß-N-acetylglucosaminidases and two ß-N-acetylgalactosaminidases) while their enantiomers 1L, 2L, 3L, and 4L are much weaker inhibitors of the same enzymes. (-)-3-epi-Pochonicine (2L) was found to be a potent and selective inhibitor of α-l-rhamnosidase. None of the compounds showed any inhibition of α-GalNAcase.


Assuntos
Inibidores Enzimáticos/síntese química , Alcaloides de Pirrolizidina/síntese química , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/isolamento & purificação , Alcaloides de Pirrolizidina/farmacologia , Estereoisomerismo
6.
Molecules ; 18(5): 6021-34, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23698053

RESUMO

D-glucopyranose-derived and L-idopyranose-derived piperidine nitrones were synthesized in good overall yields through six-step reaction sequence starting from readily available 2,3,4,6-tetra-O-benzyl-D-glucopyranose. The method is efficient and could be general for the synthesis of aldohexose-derived piperidine nitrones which are precursors of piperidine iminosugars.


Assuntos
Imino Açúcares , Óxidos de Nitrogênio , Piperidinas , Imino Açúcares/síntese química , Imino Açúcares/química , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/química , Piperidinas/síntese química , Piperidinas/química
7.
Struct Dyn ; 6(2): 024703, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31041362

RESUMO

Enzymes are known to adopt various conformations at different points along their catalytic cycles. Here, we present a comprehensive analysis of 15 isomorphous, high resolution crystal structures of the enzyme phosphoglucomutase from the bacterium Xanthomonas citri. The protein was captured in distinct states critical to function, including enzyme-substrate, enzyme-product, and enzyme-intermediate complexes. Key residues in ligand recognition and regions undergoing conformational change are identified and correlated with the various steps of the catalytic reaction. In addition, we use principal component analysis to examine various subsets of these structures with two goals: (1) identifying sites of conformational heterogeneity through a comparison of room temperature and cryogenic structures of the apo-enzyme and (2) a priori clustering of the enzyme-ligand complexes into functionally related groups, showing sensitivity of this method to structural features difficult to detect by traditional methods. This study captures, in a single system, the structural basis of diverse substrate recognition, the subtle impact of covalent modification, and the role of ligand-induced conformational change in this representative enzyme of the α-D-phosphohexomutase superfamily.

8.
ACS Omega ; 4(4): 7029-7037, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31179410

RESUMO

Glucokinase phosphorylated a series of C-1 fluorinated α-d-gluco-heptuloses. These phosphorylated products were discovered to be inhibitors of α-phosphomannomutase/phosphoglucomutase (αPMM/PGM) and ß-phosphoglucomutase (ßPGM). Inhibition potency with both mutases inversely correlated to the degree of fluorination. Structural analysis with αPMM demonstrated the inhibitor binding to the active site, with the phosphate in the phosphate binding site and the anomeric hydroxyl directed to the catalytic site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA