Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 33(51): e2105829, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599781

RESUMO

Lightweight polymeric materials are highly attractive platforms for many potential industrial applications in aerospace, soft robots, and biological engineering fields. For these real-world applications, it is vital for them to exhibit a desirable combination of great toughness, large ductility, and high strength together with desired healability and biocompatibility. However, existing material design strategies usually fail to achieve such a performance portfolio owing to their different and even mutually exclusive governing mechanisms. To overcome these hurdles, herein, for the first time a dynamic hydrogen-bonded nanoconfinement concept is proposed, and the design of highly stretchable and supratough biocompatible poly(vinyl alcohol) (PVA) with well-dispersed dynamic nanoconfinement phases induced by hydrogen-bond (H-bond) crosslinking is demonstrated. Because of H-bond crosslinking and dynamic nanoconfinement, the as-prepared PVA nanocomposite film exhibits a world-record toughness of 425 ± 31 MJ m-3 in combination with a tensile strength of 98 MPa and a large break strain of 550%, representing the best of its kind and even outperforming most natural and artificial materials. In addition, the final polymer exhibits a good self-healing ability and biocompatibility. This work affords new opportunities for creating mechanically robust, healable, and biocompatible polymeric materials, which hold great promise for applications, such as soft robots and artificial ligaments.


Assuntos
Polímeros
2.
J Hazard Mater ; 392: 122343, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092660

RESUMO

Mesoporous silica@nano-zinc amino-tris-(methylenephosphonate) (m-SiO2@Zn-AMP) spheres were synthesized via a self-assembly process to integrate the outstanding flame retardancy, thermal stability, and mechanical properties of these materials. The results indicated that nano Zn-AMP particles were successfully deposited on the surface of m-SiO2 through electrostatic interactions. The prepared m-SiO2@Zn-AMP was utilized to improve the flame retardancy, smoke suppression, and mechanical properties of epoxy resin (EP). The storage modulus, impact, and tensile strengths of the EP with 1% m-SiO2@Zn-AMP (sample EP/1m-SiO2@Zn-AMP) were increased by 29.9, 50.0, and 23.5 %, respectively, relative to the values for untreated EP. The presence of multiple flame retardant elements (i.e. Si, P, N, and Zn) in the mesoporous spheres led to the formation of high yields of compact char residues and the release of inert substance during combustion, for high flame retardancy and efficient smoke suppression in the condensed and gaseous phase. The EP/5m-SiO2@Zn-AMP sample achieved a V0 rating in a vertical UL-94 test. Compared to untreated EP, the amount of total smoke released and the peak CO production rate of EP/5m-SiO2@Zn-AMP were reduced by 53.1 and 61.5 %, respectively. Additionally, the total heat release and peak heat release rate of EP/5m-SiO2@Zn-AMP were decreased by 45.2 and 57.8 %, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA