Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochem Biophys Res Commun ; 532(3): 433-439, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891432

RESUMO

Mesenchymal stem cells (MSCs) are an important cell source for tissue homeostasis and repair due to their stemness characteristic. Lots of intrinsic signaling pathways have been reported to regulate MSC stemness, but the extrinsic signals such as sodium lactate, particularly in physiological conditions, are poorly understood. Herein, we evaluated the effect of sodium lactate on human MSC stemness regulation by examining colony-forming ability, energy metabolism, multi-lineage differentiation ability, and pluripotent gene and protein expression. The underlying mechanism was further investigated with gene knockdown as well as small molecule interference and rescue experiments. We found that: (1) low concentration (1 mM) of sodium lactate promoted the stemness of human MSCs; (2) the upregulation of glycolysis was responsible for the MSC stemness promotion; (3) lysine demethylase 6B (KDM6B) was the key regulator which mediated sodium lactate-induced glycolysis and human MSC stemness enhancement. This study indicated that sodium lactate played an important role in human MSC stemness maintenance in physiological conditions, which could be related to KDM6B mediated metabolic regulation. It would provide new insight into stem cell biology, and contribute to cell transplantation and tissue regeneration strategies.


Assuntos
Glicólise/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Lactato de Sódio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
2.
Connect Tissue Res ; 61(1): 34-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522568

RESUMO

Purpose: An underlying cause of osteoarthritis (OA) is the inability of chondrocytes to maintain homeostasis in response to changing stress conditions. The purpose of this article was to review and experimentally evaluate oxidative stress resistance and resilience concepts in cartilage using glutathione redox homeostasis as an example. This framework may help identify novel approaches for promoting chondrocyte homeostasis during aging and obesity.Materials and Methods: Changes in glutathione content and redox ratio were evaluated in three models of chondrocyte stress: (1) age- and tissue-specific changes in joint tissues of 10 and 30-month old F344BN rats, including ex vivo patella culture experiments to evaluate N-acetylcysteine dependent resistance to interleukin-1beta; (2) effect of different durations and patterns of cyclic compressive loading in bovine cartilage on glutathione stress resistance and resilience pathways; (3) time-dependent changes in GSH:GSSG in primary chondrocytes from wild-type and Sirt3 deficient mice challenged with the pro-oxidant menadione.Results: Glutathione was more abundant in cartilage than meniscus or infrapatellar fat pad, although cartilage was also more susceptible to age-related glutathione oxidation. Glutathione redox homeostasis was sensitive to the duration of compressive loading such that load-induced oxidation required unloaded periods to recover and increase total antioxidant capacity. Exposure to a pro-oxidant stress enhanced stress resistance by increasing glutathione content and GSH:GSSG ratio, especially in Sirt3 deficient cells. However, the rate of recovery, a marker of resilience, was delayed without Sirt3.Conclusions: OA-related models of cartilage stress reveal multiple mechanisms by which glutathione provides oxidative stress resistance and resilience.


Assuntos
Envelhecimento/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Glutationa/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Envelhecimento/patologia , Animais , Cartilagem Articular/patologia , Condrócitos/patologia , Humanos , Osteoartrite/patologia , Ratos
3.
Ann Rheum Dis ; 76(7): 1295-1303, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28314754

RESUMO

OBJECTIVES: Epigenetic mechanisms have been reported to play key roles in chondrogenesis and osteoarthritis (OA) development. Here, we sought to identify specific histone demethylases that are involved and delineate the underlying mechanisms. METHODS: We screened the expression of 17 distinct histone demethylases by quantitative real time PCR (qRT-PCR) during chondrogenic differentiation of C3H10T1/2 cells. The role of Kdm6b in cartilage development was then analysed with transgenic Col2a1-CreERT2;Kdm6bf/f . RNA-Seq was applied to explore the underlying changes in chondrocytes upon knockdown of Kdm6b. Experimental OA in mice was induced by destabilisation of the medial meniscus in C57BL/6J (wild type, Kdm6bf/f and Col2a1-CreERT2;Kdm6bf/f ) mice, either with intra-articular injection of shKdm6b lentivirus or after tamoxifen treatment. Mouse joints and human cartilage samples were used for histological analysis. RESULTS: Kdm6b expression was significantly increased during cartilage development. Col2a1-CreERT2;Kdm6bf/f mice displayed obvious skeletal abnormalities at E16.5 and E18.5 with intraperitoneal injection of tamoxifen at E12.5. RNA-Seq and qRT-PCR analyses revealed decreased expression of chondrocyte anabolic genes in Col2a1-CreERT2;Kdm6bf/f chondrocytes. The histological OA score was significantly higher in mice injected with Kdm6b short hairpin RNA lentivirus. Col2a1-CreERT2;Kdm6bf/f mice exhibited accelerated OA development at 8 and 12 weeks following surgical induction. The number of Kdm6b-positive chondrocytes was lower in both mice and human OA cartilage samples. CONCLUSIONS: These findings indicate that knockdown of Kdm6b in chondrocytes leads to abnormal cartilage development and accelerated OA progression via inhibition of the anabolic metabolism of chondrocytes. Understanding the epigenetic mechanism of joint cartilage development and homeostasis would be useful for development of new therapeutic modalities for OA.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrogênese/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Osteoartrite do Joelho/genética , Idoso , Animais , Western Blotting , Cartilagem/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Histona Desmetilases/genética , Homeostase/genética , Humanos , Masculino , Meniscos Tibiais/cirurgia , Camundongos , Osteoartrite do Joelho/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Stem Cells ; 33(2): 443-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25332192

RESUMO

The transcription factor Mohawk (Mkx) is expressed in developing tendons and is an important regulator of tenogenic differentiation. However, the exact roles of Mkx in tendinopathy and tendon repair remain unclear. Using gene expression Omnibus datasets and immunofluorescence assays, we found that Mkx expression level was dramatically lower in human tendinopathy tissue and it is activated at specific stages of tendon development. In mesenchymal stem cells (MSCs), ectopic Mkx expression strikingly promoted tenogenesis more efficiently than Scleraxis (Scx), a well-known master transcription factor of tendon. Significantly higher levels of tenogenic gene expression and collagen fibril growth were observed with Mkx versus Scx. Interestingly, it was observed that Mkx dramatically upregulated Scx through binding to the Tgfb2 promoter. Additionally, the transplantation of Mkx-expressing-MSC sheets promoted tendon repair in a mouse model of Achilles-tendon defect. Taken together, these data shed light on previously unrecognized roles of Mkx in tendinopathy, tenogenesis, and tendon repair as well as in regulating the TGFß pathway.


Assuntos
Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Organogênese , Transdução de Sinais , Tendões/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Bases de Dados Genéticas , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , Tendinopatia/genética , Tendinopatia/metabolismo , Tendinopatia/patologia , Tendões/patologia , Fator de Crescimento Transformador beta2/genética
5.
Ann Rheum Dis ; 74(1): 285-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24257023

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease characterised by cartilage degradation and chondrocyte hypertrophy. A recent study showed that Rac1 promoted expression of MMP13 and chondrocyte hypertrophy within the growth plate. These findings warrant further investigations on the roles of Rac1 in OA development and therapy in animal models. OBJECTIVE: To investigate the role and mechanistic pathway of Rac1 involvement in pathological changes of OA chondrocytes in vitro and OA development in vivo, as well as to develop a strategy of modulating Rac1 activity for OA treatment. MATERIAL AND METHODS: OA and normal cartilage from human or mice were used for immunohistochemical study and Rac1 activity assay. Chondrocytes treated with IL1ß and the untreated control were subjected to the Rac1 activity assay. Chondrocytes transfected with CA-Rac1, DN-Rac1 or GFP were cultured under conditions for inducing calcification. To evaluate the effect of Rac1 in OA development, an OA model was created by anterior cruciate ligament transection in mice. CA-Rac1, DN-Rac1 and GFP lentivirus, or NSC23766, were injected intra-articularly. Joints were subjected to histological analysis. RESULTS: It was found that there is aberrant Rac1 activation in human OA cartilage. Rac1 activity could also be elevated by IL1ß. Additionally, activated Rac1 promoted expression of MMP13, ADAMTS-5 and COLX by chondrocytes, partially through the ß-catenin pathway. Moreover, activation of Rac1 in knee joints by CA-Rac1 lentivirus accelerated OA progression, while inhibition of Rac1 activity by DN-Rac1 lentivirus or Rac1 inhibitor NSC23766 delayed OA development. Therefore, we developed a strategy of controlled release of NSC23766 from chitosan microspheres to OA joints, which effectively protected cartilage from destruction. CONCLUSIONS: These findings demonstrated that Rac1 activity is implicated in OA development. Also, controlled release of Rac1 inhibitor is a promising strategy for OA treatment.


Assuntos
Aminoquinolinas/farmacologia , Artrite Experimental/metabolismo , Calcinose/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Neuropeptídeos/metabolismo , Osteoartrite do Joelho/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS5 , Aminoquinolinas/administração & dosagem , Animais , Artrite Experimental/patologia , Artrite Experimental/terapia , Calcinose/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Quitosana , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Preparações de Ação Retardada , Perfilação da Expressão Gênica , Humanos , Hipertrofia , Metaloproteinase 13 da Matriz/genética , Camundongos , Microesferas , Neuropeptídeos/antagonistas & inibidores , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/terapia , Pirimidinas/administração & dosagem , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética
6.
Cell Tissue Res ; 356(2): 287-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705622

RESUMO

Tendons that connect muscles to bone are often the targets of sports injuries. The currently unsatisfactory state of tendon repair is largely attributable to the limited understanding of basic tendon biology. A number of tendon lineage-related transcription factors have recently been uncovered and provide clues for the better understanding of tendon development. Scleraxis and Mohawk have been identified as critical transcription factors in tendon development and differentiation. Other transcription factors, such as Sox9 and Egr1/2, have also been recently reported to be involved in tendon development. However, the molecular mechanisms and application of these transcription factors remain largely unclear and this prohibits their use in tendon therapy. Here, we systematically review and analyze recent findings and our own data concerning tendon transcription factors and tendon regeneration. Based on these findings, we provide interaction and temporal programming maps of transcription factors, as a basis for future tendon therapy. Finally, we discuss future directions for tendon regeneration with differentiation and trans-differentiation approaches based on transcription factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Regeneração/fisiologia , Tendões/embriologia , Cicatrização/fisiologia , Animais , Traumatismos em Atletas/cirurgia , Traumatismos em Atletas/terapia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Fatores de Transcrição SOX9/genética , Estresse Mecânico , Traumatismos dos Tendões/cirurgia , Traumatismos dos Tendões/terapia , Tendões/fisiologia , Engenharia Tecidual
7.
Geroscience ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831184

RESUMO

Excessive growth hormone (GH) has been shown to promote joint degeneration in both preclinical and clinical studies. Little is known about the effect of disrupted GH or GH receptor (GHR) on joint health. The goal of this study is to investigate joint pathology in mice with either germline (GHR-/-) or adult inducible (iGHR-/-) GHR deficiency. Knee joints from male and female GHR-/- and WT mice at 24 months of age were processed for histological analysis. Also, knee joints from male and female iGHR-/- and WT mice at 22 months of age were scanned by micro-CT (µCT) for subchondral bone changes and characterized via histology for cartilage degeneration. Joint sections were also stained for the chondrocyte hypertrophy marker, COLX, and the cartilage degeneration marker, ADAMTS-5, using immunohistochemistry. Compared to WT mice, GHR-/- mice had remarkably smooth articular joint surfaces and an even distribution of proteoglycan with no signs of degeneration. Quantitatively, GHR-/- mice had lower OARSI and Mankin scores compared to WT controls. By contrast, iGHR-/- mice were only moderately protected from developing aging-associated OA. iGHR-/- mice had a significantly lower Mankin score compared to WT. However, Mankin scores were not significantly different between iGHR-/- and WT when males and females were analyzed separately. OARSI scores did not differ significantly between WT and iGHR-/- in either individual or combined sex analyses. Both GHR-/- and iGHR-/- mice had fewer COLX+ hypertrophic chondrocytes compared to WT, while no significant difference was observed in ADAMTS-5 staining. Compared to WT, a significantly lower trabecular thickness in the subchondral bone was observed in the iGHR-/- male mice but not in the female mice. However, there were no significant differences between WT and iGHR-/- mice in the bone volume to total tissue volume (BV/TV), bone mineral density (BMD), and trabecular number in either sex. This study identified that both germline and adult-induced GHR deficiency protected mice from developing aging-associated OA with more effective protection in GHR-/- mice.

8.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341423

RESUMO

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

9.
Arthritis Rheumatol ; 75(7): 1139-1151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36762426

RESUMO

OBJECTIVE: Many patients with acromegaly, a hormonal disorder with excessive growth hormone (GH) production, report pain in joints. We undertook this study to characterize the joint pathology of mice with overexpression of bovine GH (bGH) or a GH receptor antagonist (GHa) and to investigate the effect of GH on regulation of chondrocyte cellular metabolism. METHODS: Knee joints from mice overexpressing bGH or GHa and wild-type (WT) control mice were examined using histology and micro-computed tomography for osteoarthritic (OA) pathologies. Additionally, cartilage from bGH mice was used for metabolomics analysis. Mouse primary chondrocytes from bGH and WT mice, with or without pegvisomant treatment, were used for quantitative polymerase chain reaction and Seahorse respirometry analyses. RESULTS: Both male and female bGH mice at ~13 months of age had increased knee joint degeneration, which was characterized by loss of cartilage structure, expansion of hypertrophic chondrocytes, synovitis, and subchondral plate thinning. The joint pathologies were also demonstrated by significantly higher Osteoarthritis Research Society International and Mankin scores in bGH mice compared to WT control mice. Metabolomics analysis revealed changes in a wide range of metabolic pathways in bGH mice, including beta-alanine metabolism, tryptophan metabolism, lysine degradation, and ascorbate and aldarate metabolism. Also, bGH chondrocytes up-regulated fatty acid oxidation and increased expression of Col10a. Joints of GHa mice were remarkably protected from developing age-associated joint degeneration, with smooth articular joint surface. CONCLUSION: This study showed that an excessive amount of GH promotes joint degeneration in mice, which was associated with chondrocyte metabolic dysfunction and hypertrophic changes, whereas antagonizing GH action through a GHa protects mice from OA development.


Assuntos
Acromegalia , Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Masculino , Feminino , Bovinos , Condrócitos/metabolismo , Acromegalia/metabolismo , Acromegalia/patologia , Microtomografia por Raio-X , Hormônio do Crescimento/metabolismo , Cartilagem Articular/metabolismo , Camundongos Transgênicos
10.
Front Physiol ; 13: 867921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665221

RESUMO

Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated with aging, with levels declining as individuals age but GH action negatively correlating with lifespan. GH's effects have been studied in human conditions of GH alteration, such as acromegaly and Laron syndrome, and GH therapies have been suggested to combat aging-related musculoskeletal diseases, in part, because of the decline in GH levels with advanced age. While clinical data are inconclusive, animal models have been indispensable in understanding the underlying molecular mechanisms of GH action. This review will provide a brief overview of the musculoskeletal effects of GH, focusing on clinical and animal models.

11.
J Orthop Res ; 40(12): 2771-2779, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279877

RESUMO

Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.


Assuntos
Ácidos Graxos Ômega-3 , Insulinas , Camundongos , Animais , Lipogênese/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/farmacologia , Condrócitos/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia
12.
J Bone Miner Res ; 37(12): 2531-2547, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214465

RESUMO

Understanding how obesity-induced metabolic stress contributes to synovial joint tissue damage is difficult because of the complex role of metabolism in joint development, maintenance, and repair. Chondrocyte mitochondrial dysfunction is implicated in osteoarthritis (OA) pathology, which motivated us to study the mitochondrial deacetylase enzyme sirtuin 3 (Sirt3). We hypothesized that combining high-fat-diet (HFD)-induced obesity and cartilage Sirt3 loss at a young age would impair chondrocyte mitochondrial function, leading to cellular stress and accelerated OA. Instead, we unexpectedly found that depleting cartilage Sirt3 at 5 weeks of age using Sirt3-flox and Acan-CreERT2 mice protected against the development of cartilage degeneration and synovial hyperplasia following 20 weeks of HFD. This protection was associated with increased cartilage glycolysis proteins and reduced mitochondrial fatty acid metabolism proteins. Seahorse-based assays supported a mitochondrial-to-glycolytic shift in chondrocyte metabolism with Sirt3 deletion. Additional studies with primary murine juvenile chondrocytes under hypoxic and inflammatory conditions showed an increased expression of hypoxia-inducible factor (HIF-1) target genes with Sirt3 deletion. However, Sirt3 deletion impaired chondrogenesis using a murine bone marrow stem/stromal cell pellet model, suggesting a context-dependent role of Sirt3 in cartilage homeostasis. Overall, our data indicate that Sirt3 coordinates HFD-induced changes in mature chondrocyte metabolism that promote OA. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Respiração Celular , Condrócitos , Condrogênese , Dieta Hiperlipídica , Mitocôndrias , Osteoartrite , Sirtuína 3 , Animais , Camundongos , Condrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Osteoartrite/etiologia , Osteoartrite/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo
13.
Cartilage ; 13(2_suppl): 1185S-1199S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33567897

RESUMO

OBJECTIVE: Obesity accelerates the development of osteoarthritis (OA) during aging and is associated with altered chondrocyte cellular metabolism. Protein lysine malonylation (MaK) is a posttranslational modification (PTM) that has been shown to play an important role during aging and obesity. The objective of this study was to investigate the role of sirtuin 5 (Sirt5) in regulating MaK and cellular metabolism in chondrocytes under obesity-related conditions. METHODS: MaK and SIRT5 were immunostained in knee articular cartilage of obese db/db mice and different aged C57BL6 mice with or without destabilization of the medial meniscus surgery to induce OA. Primary chondrocytes were isolated from 7-day-old WT and Sirt5-/- mice and treated with varying concentrations of glucose and insulin to mimic obesity. Sirt5-dependent effects on MaK and metabolism were evaluated by western blot, Seahorse Respirometry, and gas/chromatography-mass/spectrometry (GC-MS) metabolic profiling. RESULTS: MaK was significantly increased in cartilage of db/db mice and in chondrocytes treated with high concentrations of glucose and insulin (GluhiInshi). Sirt5 was increased in an age-dependent manner following joint injury, and Sirt5 deficient primary chondrocytes had increased MaK, decreased glycolysis rate, and reduced basal mitochondrial respiration. GC-MS identified 41 metabolites. Sirt5 deficiency altered 13 distinct metabolites under basal conditions and 18 metabolites under GluhiInshi treatment. Pathway analysis identified a wide range of Sirt5-dependent altered metabolic pathways that include amino acid metabolism, TCA cycle, and glycolysis. CONCLUSION: This study provides the first evidence that Sirt5 broadly regulates chondrocyte metabolism. We observed changes in SIRT5 and MaK levels in cartilage with obesity and joint injury, suggesting that the Sirt5-MaK pathway may contribute to altered chondrocyte metabolism that occurs during OA development.


Assuntos
Cartilagem Articular , Condrócitos , Obesidade , Sirtuínas , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Osteoartrite/metabolismo , Sirtuínas/deficiência , Sirtuínas/metabolismo
14.
Nat Commun ; 12(1): 1706, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731712

RESUMO

Our incomplete understanding of osteoarthritis (OA) pathogenesis has significantly hindered the development of disease-modifying therapy. The functional relationship between subchondral bone (SB) and articular cartilage (AC) is unclear. Here, we found that the changes of SB architecture altered the distribution of mechanical stress on AC. Importantly, the latter is well aligned with the pattern of transforming growth factor beta (TGFß) activity in AC, which is essential in the regulation of AC homeostasis. Specifically, TGFß activity is concentrated in the areas of AC with high mechanical stress. A high level of TGFß disrupts the cartilage homeostasis and impairs the metabolic activity of chondrocytes. Mechanical stress stimulates talin-centered cytoskeletal reorganization and the consequent increase of cell contractile forces and cell stiffness of chondrocytes, which triggers αV integrin-mediated TGFß activation. Knockout of αV integrin in chondrocytes reversed the alteration of TGFß activation and subsequent metabolic abnormalities in AC and attenuated cartilage degeneration in an OA mouse model. Thus, SB structure determines the patterns of mechanical stress and the configuration of TGFß activation in AC, which subsequently regulates chondrocyte metabolism and AC homeostasis.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Estresse Mecânico , Fator de Crescimento Transformador beta/metabolismo , Animais , Osso e Ossos/patologia , Linhagem Celular , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Homeostase , Humanos , Integrina alfaV/genética , Integrina alfaV/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Talina/metabolismo
15.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 6): o1342, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21579431

RESUMO

THE TITLE COMPOUND (SYSTEMATIC NAME: 8ß-acet-oxy-14α-benzo-yloxy-N-ethyl-13ß,15α-dihydr-oxy-1α,6α,16ß-trimeth-oxy-4ß-methoxy-methyl-eneaconitane), C(34)H(47)NO(10), is a typical aconitine-type C(19)-diterpenoid alkaloid, and was isolated from the roots of the Aconitum carmichaeli Debx. The mol-ecule has an aconitine carbon skeleton with four six-membered rings and two five-membered rings, whose geometry is similar to these observed in other C(19)-diterpenoid alkaloids; both of five-membered rings have the envelope configurations and the six-membered N-containing heterocyclic ring displays a chair conformation. Intra-molecular O-H⋯O hydrogen bonding occurs. Weak inter-molecular C-H⋯O hydrogen bonding is observed in the crystal structure.

16.
Am J Sports Med ; 48(11): 2808-2818, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762553

RESUMO

BACKGROUND: Osteoarthritis is the leading cause of disability worldwide; cartilage degeneration and defects are the central features. Significant progress in tissue engineering holds promise to regenerate damaged cartilage tissue. However, a formidable challenge is to develop a 3-dimensional (3D) tissue construct that can regulate local immune environment to facilitate the intrinsic osteochondral regeneration. PURPOSE: To evaluate efficacy of a 3D-printed decellularized cartilage extracellular matrix (ECM) and polyethylene glycol diacrylate (PEGDA) integrated novel scaffold (PEGDA/ECM) together with the natural compound honokiol (Hon) for regenerating osteochondral defect. STUDY DESIGN: Controlled laboratory study. METHODS: We used a stereolithography-based 3D printer for PEGDA/ECM bioprinting. A total of 36 Sprague-Dawley rats with cylindrical osteochondral defect in the trochlear groove of the femur were randomly assigned into 3 different treatments: no scaffold implantation (Defect group), 3D printed PEGDA/ECM scaffold alone (PEGDA/ECM group), or Hon suspended in a 3D-printed PEGDA/ECM scaffold (PEGDA/ECM/Hon group). 12 rats that underwent only medial parapatellar incision surgery were used as normal controls. The femur specimens were postoperatively harvested at 4 and 8 weeks for gross, micro-CT, and histological evaluations. The efficacy of PEGDA/ECM/Hon scaffold on the release of proinflammatory cytokines from the macrophages stimulated by lipopolysaccharide (LPS) was evaluated in-vitro. RESULTS: In vitro results determined that PEGDA/ECM/Hon scaffold could suppress the release of proinflammatory cytokines from macrophages that were stimulated by LPS. Macroscopic images showed that the PEGDA/ECM/Hon group had significantly higher ICRS scoring than that of defect and PEGDA/ECM groups. Micro-CT evaluation demonstrated that much more bony tissue was formed in the defect sites implanted with the PEGDA/ECM scaffold or PEGDA/ECM/Hon scaffold compared with the untreated defects. Histological analysis showed that the PEGDA/ECM/Hon group had a significant enhancement in osteochondral regeneration at 4 and 8 weeks after surgery in comparison with the ECM/PEGDA or defect group. CONCLUSION: This study demonstrated that 3D printing of PEGDA/ECM hydrogel incorporating the anti-inflammatory phytomolecule honokiol could provide a promising scaffold for osteochondral defect repair.


Assuntos
Cartilagem Articular , Hidrogéis , Osteoartrite , Alicerces Teciduais , Animais , Anti-Inflamatórios , Compostos de Bifenilo , Matriz Extracelular , Lignanas , Osteoartrite/terapia , Polietilenoglicóis , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Regeneração
17.
J Bone Miner Res ; 35(5): 956-965, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31910305

RESUMO

Epigenetic regulation is highly correlated with osteoarthritis (OA) development, whereas its role and detailed mechanisms remain elusive. In this study, we explored the expression of EZH2, an H3K27me3 transferase, in human OA cartilages and its roles in regulating OA pathogenesis. Here, we found EZH2 was highly expressed in both mice and human OA cartilage samples by using histological analysis and RNA sequencing (RNA-Seq). The medial meniscectomy (MMx) OA model results indicated the conditional knockout of Ezh2 deteriorated OA pathological conditions. Furthermore, we showed the positive role of Ezh2 in cartilage wound healing and inhibition of hypertrophy through activating TNFSF13B, a member of the tumor necrosis factor superfamily. Further, we also indicated that the effect of TNFSF13B, increased by Ezh2, might boost the healing of chondrocytes through increasing the phosphorylation of Akt. Taken together, our results uncovered an EZH2-positive subpopulation existed in OA patients, and that EZH2-TNFSF13B signaling was responsible for regulating chondrocyte healing and hypertrophy. Thus, EZH2 might act as a new potential target for OA diagnosis and treatment. © 2020 American Society for Bone and Mineral Research.


Assuntos
Cartilagem Articular , Proteína Potenciadora do Homólogo 2 de Zeste , Osteoartrite , Animais , Fator Ativador de Células B , Cartilagem , Condrócitos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética , Humanos , Hipertrofia , Camundongos , Osteoartrite/genética
18.
Stem Cell Reports ; 14(3): 478-492, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32084387

RESUMO

Articular cartilage injury and degeneration causing pain and loss of quality-of-life has become a serious problem for increasingly aged populations. Given the poor self-renewal of adult human chondrocytes, alternative functional cell sources are needed. Direct reprogramming by small molecules potentially offers an oncogene-free and cost-effective approach to generate chondrocytes, but has yet to be investigated. Here, we directly reprogrammed mouse embryonic fibroblasts into PRG4+ chondrocytes using a 3D system with a chemical cocktail, VCRTc (valproic acid, CHIR98014, Repsox, TTNPB, and celecoxib). Using single-cell transcriptomics, we revealed the inhibition of fibroblast features and activation of chondrogenesis pathways in early reprograming, and the intermediate cellular process resembling cartilage development. The in vivo implantation of chemical-induced chondrocytes at defective articular surfaces promoted defect healing and rescued 63.4% of mechanical function loss. Our approach directly converts fibroblasts into functional cartilaginous cells, and also provides insights into potential pharmacological strategies for future cartilage regeneration.


Assuntos
Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibrocartilagem/citologia , Animais , Reprogramação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Fibroblastos/metabolismo , Camundongos , Organoides/citologia , Regeneração , Alicerces Teciduais/química , Transcriptoma/genética
19.
J Clin Invest ; 129(6): 2578-2594, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946695

RESUMO

The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrß (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.


Assuntos
Regeneração Óssea , Osso Cortical/metabolismo , Macrófagos/metabolismo , Osteogênese , Periósteo/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Animais , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Fosfatase Ácida Resistente a Tartarato/genética
20.
ACS Biomater Sci Eng ; 5(7): 3511-3522, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405734

RESUMO

Tendinopathy is a common disease, which is characterized by pain, swelling, and dysfunction. At the late stage of tendinopathy, pathological changes may occur, such as tendon calcification. Previously, we have shown that in situ tendon stem/progenitor cells (TSPCs) underwent osteogenesis in the inflammatory niche in diseased tendons. In this study, we demonstrate that this process is accompanied by the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling. A specific inhibitor NSC23766 significantly downregulated catabolic factors and calcification-related genes and rescued the tenogenesis gene expression of TSPCs under the influence of Interleukin (IL)-1ß in vitro. For in vivo evaluation, we further developed a drug delivery system to encapsulate Rac1 inhibitor NSC23766. Chitosan/ß-glycerophosphate hydrogel encapsulated NSC23766 effectively impeded tendon calcification and enhanced tendon regeneration in rat Achilles tendinosis. Our findings indicated that inhibiting Rac1 signaling could act as an effective intervention for tendon pathological calcification and promote tendon regeneration, thus providing a new therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA