Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091362

RESUMO

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Assuntos
Parasitos , Fosfoproteínas Fosfatases , Toxoplasma , Animais , Humanos , Camundongos , Domínio Catalítico , Ciclo Celular/genética , Divisão Celular , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Virulência/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
2.
FASEB J ; 37(6): e22932, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115746

RESUMO

Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.


Assuntos
Antioxidantes , Toxoplasma , Animais , Camundongos , Glutarredoxinas/genética , Toxoplasma/genética , Sequência de Aminoácidos , Virulência , Oxirredução , Estresse Oxidativo
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772807

RESUMO

Chronic infection with liver flukes (such as Clonorchis sinensis) can induce severe biliary injuries, which can cause cholangitis, biliary fibrosis, and even cholangiocarcinoma. The release of extracellular vesicles by C. sinensis (CsEVs) is of importance in the long-distance communication between the hosts and worms. However, the biological effects of EVs from liver fluke on biliary injuries and the underlying molecular mechanisms remain poorly characterized. In the present study, we found that CsEVs induced M1-like activation. In addition, the mice that were administrated with CsEVs showed severe biliary injuries associated with remarkable activation of M1-like macrophages. We further characterized the signatures of miRNAs packaged in CsEVs and identified a miRNA Csi-let-7a-5p, which was highly enriched. Further study showed that Csi-let-7a-5p facilitated the activation of M1-like macrophages by targeting Socs1 and Clec7a; however, CsEVs with silencing Csi-let-7a-5p showed a decrease in proinflammatory responses and biliary injuries, which involved in the Socs1- and Clec7a-regulated NF-κB signaling pathway. Our study demonstrates that Csi-let-7a-5p delivered by CsEVs plays a critical role in the activation of M1-like macrophages and contributes to the biliary injuries by targeting the Socs1- and Clec7a-mediated NF-κB signaling pathway, which indicates a mechanism contributing to biliary injuries caused by fluke infection. However, molecules other than Csi-let-7a-5p from CsEVs that may also promote M1-like polarization and exacerbate biliary injuries are not excluded.


Assuntos
Vesículas Extracelulares/metabolismo , Fasciola hepatica/metabolismo , Macrófagos/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Infecção Persistente/parasitologia , Transdução de Sinais/fisiologia
4.
Parasitol Res ; 123(2): 145, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418741

RESUMO

Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.


Assuntos
MicroRNAs , Toxoplasma , Gravidez , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Endógeno Competitivo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
5.
Parasitol Res ; 123(1): 108, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263530

RESUMO

Enterocytozoon bieneusi and Blastocystis may cause diarrhea in humans and various animals. However, little information is available regarding the prevalence and genetic diversity of E. bieneusi and Blastocystis in donkeys. To fill this gap, we molecularly assessed E. bieneusi and Blastocystis in fecal samples from donkeys (n = 815) in Shanxi Province, north China. The overall prevalence of E. bieneusi and Blastocystis in donkeys was 8.1% and 0.2%, respectively. Region and age were risk factors associated with E. bieneusi infection in donkeys. Three internal transcribed spacer (ITS) genotypes of E. bieneusi were identified in the current study, including two previously described genotypes (D and Henan-IV) and one novel genotype (named SXD1). Of which, genotype D was found to be the most prevalent. Phylogenetic analysis demonstrated that the three genotypes belonged to group 1, implying a potential of zoonotic transmission. Multilocus sequence typing showed that 19, 15, 13, and 22 types were identified at the loci MS1, MS3, MS4, and MS7, respectively, forming six multilocus genotypes (MLGs) distributed in the genotype D. One Blastocystis subtype (ST33) was identified, which has previously been reported only in horses. This is the first molecular-based description of E. bieneusi and Blastocystis infections in donkeys in Shanxi Province, north China, contributing to a better understanding of transmission dynamics and molecular epidemiological characteristics of the two intestinal protozoa.


Assuntos
Blastocystis , Enterocytozoon , Humanos , Cavalos , Animais , Equidae , Filogenia , Prevalência , China , Genótipo
6.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063076

RESUMO

Eukaryotic translation initiation factors (eIFs) are crucial for initiating protein translation and ensuring the correct assembly of mRNA-ribosomal subunit complexes. In this study, we investigated the effects of deleting six eIFs in the apicomplexan parasite Toxoplasma gondii using the CRISPR-Cas9 system. We determined the subcellular localization of these eIFs using C-terminal endogenous tagging and immunofluorescence analysis. Four eIFs (RH::315150-6HA, RH::286090-6HA, RH::249370-6HA, and RH::211410-6HA) were localized in the cytoplasm, while RH::224235-6HA was localized in the apicoplast. Additionally, RH::272640-6HA was found in both the basal complex and the cytoplasm of T. gondii. Functional characterization of the six RHΔeIFs strains was conducted using plaque assay, cell invasion assay, intracellular growth assay and egress assay in vitro, and virulence assay in mice. Disruption of five eIF genes (RHΔ315150, RHΔ272640, RHΔ249370, RHΔ211410, and RHΔ224235) did not affect the ability of the T. gondii RH strain to invade, replicate, form plaques and egress in vitro, or virulence in Kunming mice (p > 0.05). However, the RHΔ286090 strain showed slightly reduced invasion efficiency and virulence (p < 0.01) compared to the other five RHΔeIFs strains and the wild-type strain. The disruption of the TGGT1_286090 gene significantly impaired the ability of tachyzoites to differentiate into bradyzoites in both type I RH and type II Pru strains. These findings reveal that the eukaryotic translation initiation factor TGGT1_286090 is crucial for T. gondii bradyzoite differentiation and may serve as a potential target for drug development and an attenuated vaccine against T. gondii.


Assuntos
Sistemas CRISPR-Cas , Fatores de Iniciação em Eucariotos , Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasma/metabolismo , Toxoplasma/crescimento & desenvolvimento , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Virulência/genética , Toxoplasmose/parasitologia , Toxoplasmose/genética , Humanos
7.
Parasitol Res ; 122(2): 441-450, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36471092

RESUMO

Several calcium-binding proteins including calcium-dependent protein kinases play important roles in several facets of the intracellular infection cycle of the apicomplexan protozoan parasite Toxoplasma gondii. However, the role of the calcium-binding epidermal growth factor (EGF) domain-containing proteins (CBDPs) remains poorly understood. In this study, we examined the functions of four CBDP genes in T. gondii RH strain of type I by generating knock-out strains using CRISPR-Cas9 system. We investigated the ability of mutant strains deficient in CBDP1, CBDP2, CBDP3, or CBDP4 to form plaques, replicate intracellularly, and egress from the host cells. The results showed that no definite differences between any of these four CBDP mutant strains and the wild-type strain in terms of their ability to form plaques, intracellular replication, and egress. Additionally, CBDP mutants did not exhibit any significant attenuated virulence compared to the wild-type strain in mice. The expression profiles of CBDP2-4 genes were conserved among T. gondii strains of different genotypes, life cycle stages, and developmental forms. Whether other CBDP genes play any roles in the pathogenicity of T. gondii strains of different genotypes remains to be elucidated.


Assuntos
Parasitos , Toxoplasma , Animais , Camundongos , Virulência , Parasitos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Clin Microbiol Rev ; 34(1)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33239310

RESUMO

Toxoplasma gondii is known to infect a considerable number of mammalian and avian species and a substantial proportion of the world's human population. The parasite has an impressive ability to disseminate within the host's body and employs various tactics to overcome the highly regulatory blood-brain barrier and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated without any obvious ill effects. However, primary infection in immunosuppressed patients can result in acute cerebral or systemic disease, and reactivation of latent tissue cysts can lead to a deadly outcome. It is imperative that treatment of life-threatening toxoplasmic encephalitis is timely and effective. Several therapeutic and prophylactic regimens have been used in clinical practice. Current approaches can control infection caused by the invasive and highly proliferative tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other limitations are associated with the standard pyrimethamine-based therapy, and effective vaccines are unavailable. In this review, the epidemiology, economic impact, pathophysiology, diagnosis, and management of cerebral toxoplasmosis are discussed, and critical areas for future research are highlighted.

9.
BMC Genomics ; 23(1): 847, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544082

RESUMO

BACKGROUND: Toxocara canis is distributed worldwide, posing a serious threat to both human and dog health; however, the pathogenesis of T. canis infection in dogs remains unclear. In this study, the changes in microRNA (miRNA) expression profiles in the bone marrow of Beagle dogs were investigated by RNA-seq and bioinformatics analysis. RESULTS: Thirty-nine differentially expressed (DE) miRNAs (DEmiRNAs) were identified in this study. Among these, four DEmiRNAs were identified at 24 h post-infection (hpi) and all were up-regulated; eight DEmiRNAs were identified with two up-regulated miRNAs and six down-regulated miRNAs at 96 hpi; 27 DEmiRNAs were identified with 13 up-regulated miRNAs and 14 down-regulated miRNAs at 36 days post-infection (dpi). Among these DEmiRNAs, cfa-miR-193b participates in the immune response by regulating the target gene cd22 at 24 hpi. The novel_328 could participate in the inflammatory and immune responses through regulating the target genes tgfb1 and tespa1, enhancing the immune response of the host and inhibiting the infection of T. canis at 96 hpi. In addition, cfa-miR-331 and novel_129 were associated with immune response and self-protection mechanisms at 36 dpi. 20 pathways were significantly enriched by KEGG pathway analysis, most of which were related to inflammatory response, immune response and cell differentiation, such as Cell adhesion molecules (CAMs), ECM-receptor interaction and Focal adhesion. CONCLUSIONS: These findings suggested that miRNAs of Beagle dog bone marrow play important roles in the pathogenesis of T. canis infection in dogs and provided useful resources to better understand the interaction between T. canis and the hosts.


Assuntos
MicroRNAs , Toxocaríase , Animais , Cães , Medula Óssea/metabolismo , Medula Óssea/parasitologia , Doenças do Cão/genética , Doenças do Cão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Toxocara canis/genética , Toxocaríase/genética , Toxocaríase/metabolismo
10.
J Immunol ; 204(6): 1562-1570, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31996457

RESUMO

In this study, we generated a tkl1 deletion mutant in the Toxoplasma gondii type 1 RH (RHΔtkl1) strain and tested the protective efficacies of vaccination using RHΔtkl1 tachyzoites against acute, chronic, and congenital T. gondii infections in Kunming mice. Mice vaccinated with RHΔtkl1 mounted a strong humoral and cellular response as shown by elevated levels of anti-T. gondii-specific IgG, IL-2, IL-12, IFN-γ, and IL-10. All RHΔtkl1-vaccinated mice survived a lethal challenge with 1 × 103 tachyzoites of type 1 RH or ToxoDB#9 (PYS or TgC7) strain as well as 100 cysts or oocysts of Prugniuad strain. All mock-vaccinated plus infected mice have died. Vaccination also protected against cyst- or oocyst-caused chronic infection, reduced vertical transmission caused by oocysts, increased litter size, and maintained body weight of pups born to dams challenged with 10 oocysts on day 5 of gestation. In contrast, all mock-vaccinated plus oocysts-infected dams had aborted, and no fetus has survived. Vaccinated dams remained healthy postinfection, and their brain cyst burden was significantly reduced compared with mock-vaccinated dams infected with oocysts. In vivo depletion of CD4+ T cells, CD8+ T cells, and B cells revealed that CD8+ T cells are involved in the protection of mice against T. gondii infection. Additionally, adoptive transfer of CD8+ T cells from RHΔtkl1-vaccinated mice significantly enhanced the survival of naive mice infected with the pathogenic strain. Together, these data reaffirm the importance of CD8+ T cell responses in future vaccine design for toxoplasmosis and present T. gondii tkl1 gene as a promising vaccine candidate.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Protozoárias/administração & dosagem , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Toxoplasmose Congênita/prevenção & controle , Doença Aguda/terapia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Doença Crônica/prevenção & controle , Modelos Animais de Doenças , Feminino , Genes de Protozoários/genética , Genes de Protozoários/imunologia , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Gado/parasitologia , Masculino , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/genética , Vacinas Protozoárias/imunologia , Deleção de Sequência , Toxoplasma/genética , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/transmissão , Toxoplasmose Congênita/imunologia , Toxoplasmose Congênita/parasitologia , Toxoplasmose Congênita/transmissão , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA