Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Nutr ; 154(3): 896-907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301957

RESUMO

BACKGROUND: Metallothioneins (MTs) have a strong affinity for zinc (Zn) and remain at a sufficiently high level in mitochondria. As the avian embryo is highly susceptible to oxidative damage and relatively easy to manipulate in a naturally closed chamber, it is an ideal model of the effects of oxidative stress on mitochondrial function. However, the protective roles and molecular mechanisms of Zn-inducible protein expression on mitochondrial function in response to various stressors are poorly understood. OBJECTIVES: The study aimed to investigate the mechanisms by which Zn-induced MT4 expression protects mitochondrial function and energy metabolism subjected to oxidative stress using the avian embryo and embryonic primary hepatocyte models. METHODS: First, we investigated whether MT4 expression alters mitochondrial function. Then, we examined the effects of Zn-induced MT4 overexpression and MT4 silencing on embryonic primary hepatocytes from breeder hens fed a normal Zn diet subjected to a tert-butyl hydroperoxide (BHP) oxidative stress challenge during incubation. In vivo, the avian embryos from hens fed the Zn-deficient and Zn-adequate diets were used to determine the protective roles of Zn-induced MT4 expression on the function of mitochondria exposed to oxidative stress induced by in ovo BHP injection. RESULTS: An in vitro study revealed that Zn-induced MT4 expression reduced reactive oxygen species accumulation in primary hepatocytes. MT4 silencing exacerbated BHP-mediated mitochondrial dysfunction whereas Zn-inducible MT4 overexpression mitigated it. Another in vivo study disclosed that maternal Zn-induced MT4 expression protected mitochondrial function in chick embryo hepatocytes against oxidative stress by inhibiting the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/peroxisome proliferators-activated receptor-γ (PPAR-γ) pathway. CONCLUSION: This study underscores the potential protective roles of Zn-induced MT4 expression via the downregulation of the PGC-1α/PPAR-γ pathway on mitochondrial function stimulated by the stress challenge in the primary hepatocytes in an avian embryo model. Our findings suggested that Zn-induced MT4 expression could provide a new therapeutic target and preventive strategy for repairing mitochondrial dysfunction in disease.


Assuntos
Doenças Mitocondriais , Zinco , Embrião de Galinha , Animais , Feminino , Zinco/farmacologia , Zinco/metabolismo , Galinhas/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Doenças Mitocondriais/metabolismo
2.
Cell Mol Biol Lett ; 29(1): 90, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877403

RESUMO

The membrane-delimited receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), which is expressed in the intestine, collaborates with broad neutral amino acid transporter 1 (B0AT1). Tryptophan (Trp) is transported into intestinal epithelial cells by ACE2 and B0AT1. However, whether ACE2 and its binding protein B0AT1 are involved in Trp-mediated alleviation of intestinal injury is largely unknown. Here, we used weaned piglets and IPEC-J2 cells as models and found that ACE2/B0AT1 alleviated lipopolysaccharide (LPS)-induced diarrhea and promoted intestinal barrier recovery via transport of Trp. The levels of the aryl hydrocarbon receptor (AhR) and mechanistic target of rapamycin (mTOR) pathways were altered by ACE2. Dietary Trp supplementation in LPS-treated weaned piglets revealed that Trp alleviated diarrhea by promoting ACE2/B0AT1 expression, and examination of intestinal morphology revealed that the damage to the intestinal barrier was repaired. Our study demonstrated that ACE2 accompanied by B0AT1 mediated the alleviation of diarrhea by Trp through intestinal barrier repair via the mTOR pathway.


Assuntos
Enzima de Conversão de Angiotensina 2 , Diarreia , Mucosa Intestinal , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Triptofano , Animais , Triptofano/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Suínos , Diarreia/metabolismo , Mucosa Intestinal/metabolismo , Transdução de Sinais , Linhagem Celular , COVID-19/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , SARS-CoV-2
3.
Cell Mol Biol Lett ; 28(1): 50, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365491

RESUMO

BACKGROUND: Energy metabolism disorder or insufficient energy supply during incubation will affect the development and survival of avian embryos. Especially, ß-oxidation could not provide the continuous necessary energy for avian embryonic development due to the increasing energy demand under hypoxic conditions during the mid-late embryonic stages. The role and mechanism of hypoxic glycolysis replacing ß-oxidation as the main source of energy supply for avian embryonic development in the mid-late stages is unclear. RESULTS: Here, we found that in ovo injection with glycolysis inhibitor or γ-secretase inhibitor both decreased the hepatic glycolysis level and impaired goose embryonic development. Intriguingly, the blockade of Notch signaling is also accompanied by the inhibition of PI3K/Akt signaling in the embryonic primary hepatocytes and embryonic liver. Notably, the decreased glycolysis and impaired embryonic growth induced by the blockade of Notch signaling were restored by activation of PI3K/Akt signaling. CONCLUSIONS: Notch signaling regulates a key glycolytic switch in a PI3K/Akt-dependent manner to supply energy for avian embryonic growth. Our study is the first to demonstrate the role of Notch signaling-induced glycolytic switching in embryonic development, and presents new insight into the energy supply patterns in embryogenesis under hypoxic conditions. In addition, it may also provide a natural hypoxia model for developmental biology studies such as immunology, genetics, virology, cancer, etc.


Assuntos
Desenvolvimento Embrionário , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Glicólise , Hipóxia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Aves
4.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979102

RESUMO

Maintaining an active fatty acid metabolism is important for renal growth, development, and health. We evaluated the effects of anaplerotic and ketogenic energy sources on fatty acid oxidation during stimulation with clofibrate, a pharmacologic peroxisome proliferator-activated receptor α (PPARα) agonist. Suckling newborn pigs (n = 72) were assigned into 8 dietary treatments following a 2 × 4 factorial design: ± clofibrate (0.35%) and diets containing 5% of either (1) glycerol-succinate (GlySuc), (2) tri-valerate (TriC5), (3) tri-hexanoate (TriC6), or (4) tri-2-methylpentanoate (Tri2MPA). Pigs were housed individually and fed the iso-caloric milk replacer diets for 5 d. Renal fatty acid oxidation was measured in vitro in fresh tissue homogenates using [1-14C]-labeled palmitic acid. The oxidation was 30% greater in pig received clofibrate and 25% greater (p < 0.05) in pigs fed the TriC6 diet compared to those fed diets with GlySuc, TriC5, and Tri2MPA. Addition of carnitine also stimulated the oxidation by twofold (p < 0.05). The effects of TriC6 and carnitine on palmitic acid oxidation were not altered by clofibrate stimulation. However, renal fatty acid composition was altered by clofibrate and Tri2MPA. In conclusion, modification of anaplerosis or ketogenesis via dietary substrates had no influence on in vitro renal palmitic acid oxidation induced by PPARα activation.


Assuntos
Ácidos Graxos/metabolismo , Corpos Cetônicos/metabolismo , Rim/metabolismo , Animais , Animais Recém-Nascidos , Carnitina/farmacologia , Clofibrato/farmacologia , Dieta , Rim/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Leite/metabolismo , Oxirredução/efeitos dos fármacos , PPAR alfa/metabolismo , Ácido Palmítico/metabolismo , Suínos
5.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 126-135, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31532044

RESUMO

Moringa stem meal (MSM) with a high level of crude fibre (CF) might be developed and utilized in herbivorous geese as an unconventional feedstuff. The aim of this study was to investigate the effect of the MSM level in the diet on the growth performance, slaughter performance, breast meat quality and serum biochemical parameters in geese from 22 to 70 days of age. A one-factor completely randomized design was adopted in our study. A total of one thousand eight 21-day-old geese were randomly divided into six groups, with six replicates per group and 28 birds per replicate. The geese were fed diets containing MSM levels of 0, 20, 40, 60, 80 or 100 g/kg during day 22-70. The dietary MSM level had no effect (p > .05) on the final body weight (BW), average daily gain (ADG) or average daily feed intake (ADFI). The feed/gain ratio (F/G) increased linearly (p < .001) as the dietary MSM level increased. No differences (p > .05) were observed in the slaughter performance, meat quality and the relative organ weight (except for thymus) of the geese (p > .05). The relative weight of the thymus in the geese fed diets with supplementation of MSM was higher than that in the non-supplemented MSM control group (p < .05). In addition, 100 g MSM/kg of diet decreased the serum glucose (GLU) level (p < .05) and increased the alanine transaminase (ALT) enzyme activity (p = .03). Dietary MSM levels of no more than 60 g/kg had no effects on the growth performance and slaughter performance, whereas diets with 100 g MSM/kg increased the F/G and serum ALT enzyme activity, as well as decreasing the serum GLU level. Therefore, MSM provided at a reasonable level could be developed as an unconventional feedstuff for geese at the finisher period.


Assuntos
Composição Corporal/efeitos dos fármacos , Gansos/crescimento & desenvolvimento , Moringa/química , Caules de Planta/química , Alanina Transaminase/sangue , Animais , Glicemia/metabolismo , Gansos/sangue
6.
Asian-Australas J Anim Sci ; 33(3): 456-464, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31480186

RESUMO

OBJECTIVE: The aim of this study is to investigate the effect of oral spray with probiotics on the intestinal development and microflora colonization of hatched ducklings. METHODS: In Exp. 1, an one-way factorial design was used to study the antibacterial activity of the probiotics and metabolites on Escherichia coli (E. coli) without antimicrobial resistance. There were four experimental groups including saline as control and Lactobacillus, Bacillus subtilis, combined Lactobacillus and Bacillus subtilis groups. In Exp. 2, 64-day-old ducklings were allotted to 2 treatments with 4 replicated pens. Birds in the control group were fed a basal diet supplemented with Lactobacillus fermentation in the feed whereas birds in the oral spray group were fed the basal diet and administrated Lactobacillus fermentation by oral spray way during the first week. RESULTS: In Exp. 1, the antibacterial activities of probiotics and metabolites on E. coli were determined by the diameter of inhibition zone in order: Lactobacillus>combined Lactobacillusand Bacillus subtilis>Bacillus subtilis. Additionally, compared to E. coli without resistance, E. coli with resistance showed a smaller diameter of inhibition zones. In Exp. 2, compared to control feeding group, oral spray group increased (p<0.05) the final body weight at d 21 and average daily gain for d 1-21 and the absolute weight of the jejunum, ileum and total intestine tract as well as cecum Lactobacillus amount at d 21. CONCLUSION: Lactobacillus exhibited a lower antibacterial activity on E. coli with resistance than E. coli without resistance. Oral spray with Lactobacillus fermentation during the first week of could improve the intestinal development, morphological structure, and microbial balance to promote growth performance of ducklings from hatch to 21 d of age.

7.
J Therm Biol ; 84: 190-199, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31466753

RESUMO

MicroRNAs (miRNAs) expressions are altered by maternal stresses and nutritional status. Our previous study has demonstrated that maternal manganese (Mn) addition could protect chick embryos against maternal heat stress via enhancing anti-apoptotic ability in embryonic hearts. The objective of this study was to investigate whether this protective effect could be achieved via miRNA mechanisms, and also be sustained in offspring broilers. A completely randomized design with a 2 (maternal normal and high temperatures: 21 and 32 °C) × 2 (maternal control basal diet and the basal diet + 120 mg Mn/kg) factorial arrangement of treatments was adopted. Totally 96 broiler breeder hens were allotted to 4 treatments with 6 replicates. Subsequently, 24 hatched chicks from each maternal treatment were divided into 6 replicates. Maternal supplemental 120 mg Mn/kg reduced the increased expressions of miR-1551 and miR-34c in hearts of offspring embryos but not broilers under maternal heat stress. B-cell CLL/lymphoma 2 (BCL2) and NF-κB-inducing kinase (NIK) genes related to anti-apoptotic ability were identified as direct targets for miR-1551 and miR-34c, respectively. Under maternal heat stress, maternal supplemental 120 mg Mn/kg activated target BCL2 expression and NIK-dependent NF-κB pathway via mediating miR-1551 and miR-34c expressions in hearts of offspring embryos rather than broilers.


Assuntos
Doenças das Aves , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Transtornos de Estresse por Calor/veterinária , Manganês/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Aviárias/genética , Embrião de Galinha , Galinhas , Feminino , Coração/embriologia , Masculino , MicroRNAs , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
8.
Br J Nutr ; 120(1): 3-12, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29936928

RESUMO

To investigate the effects of environmental temperature and dietary Zn on egg production performance, egg quality and antioxidant status, as well as expression of heat-shock proteins (HSP) in tissues, of laying broiler breeders, we used a completely randomised design with a 2×3 factorial arrangement of treatments. The two environmental temperatures were normal (21±1°C, NT) and high (32±1°C, HT). The three dietary Zn sources were a Zn-unsupplemented basal diet (CON), and the basal diet supplemented with 110 mg Zn/kg as either the inorganic Zn sulphate (iZn) or the organic Zn proteinate with a moderate chelation strength (oZn). HT decreased (P<0·002) egg weight, laying rate, eggshell strength, thickness and weight, but increased (P≤0·05) rectal temperature, broken egg rate, misshapen egg rate, feed:egg ratio, Cu Zn superoxide dismutase activities in liver and pancreas, as well as metallothionein (MT) level in pancreas, and HSP70 mRNA levels in liver and pancreas of laying broiler breeders. Broiler breeders fed the oZn diet had higher (P<0·04) Zn content in the liver, as well as MT levels in the liver and pancreas, compared with those fed the CON diet. Under HT, broiler breeders fed the oZn diet had higher (P<0·05) Zn content in the pancreas compared with those fed the iZn and CON diets. The results from this study indicated that HT impaired egg production performance and eggshell quality possibly because of the disturbed redox balance and HSP homoeostasis, whereas the oZn is more available than the iZn for pancreatic Zn of heat-stressed laying broiler breeders.


Assuntos
Ração Animal , Antioxidantes/metabolismo , Ovos , Proteínas de Choque Térmico/metabolismo , Temperatura , Zinco/administração & dosagem , Ciências da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Fígado/efeitos dos fármacos , Malondialdeído/metabolismo , Metalotioneína/metabolismo , Pâncreas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Superóxido Dismutase-1/metabolismo , Sulfato de Zinco/administração & dosagem
9.
Br J Nutr ; 116(11): 1851-1860, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27890044

RESUMO

To investigate the effect of Mn on antioxidant status and on the expressions of heat shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21±1°C, and high, 32±1°C)×3 dietary Mn treatments (a Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet, either as inorganic Mn sulphate (iMn) or as organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in any of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease Cu Zn superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased Mn superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase in malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expressions of heat shock factor 1 (HSF1) and HSF3 mRNA and heat shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels compared with those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70, HSF1 and HSF3 expressions in the tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance the heart's antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.


Assuntos
Proteínas Aviárias/metabolismo , Galinhas/fisiologia , Proteínas de Ligação a DNA/metabolismo , Dieta/veterinária , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Manganês/administração & dosagem , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Aviárias/genética , Biomarcadores/metabolismo , Quelantes/administração & dosagem , Galinhas/crescimento & desenvolvimento , China , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Ventrículos do Coração/enzimologia , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Absorção Intestinal , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Manganês/metabolismo , Compostos de Manganês/administração & dosagem , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Sulfatos/administração & dosagem , Transativadores/genética , Fatores de Transcrição/genética
10.
Br J Nutr ; 114(12): 1965-74, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26435464

RESUMO

To investigate the effect of Mn on antioxidant status and expression levels of heat-shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21 (sem 1)°C and high, 32 (sem 1)°C)×3 dietary Mn treatments (an Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet as inorganic Mn sulphate (iMn) or organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in all of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease copper zinc superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased manganese superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase of malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expression levels of heat-shock factor 1 (HSF1) and HSF3 mRNA and heat-shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels than those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70 and HSF1, HSF3 expression levels in tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance heart antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.


Assuntos
Antioxidantes/metabolismo , Dieta , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Manganês/administração & dosagem , Temperatura , Animais , Galinhas , Feminino , Proteínas de Choque Térmico/genética , Fígado/enzimologia , Malondialdeído/metabolismo , Manganês/farmacocinética , Miocárdio/enzimologia , RNA/metabolismo , Superóxido Dismutase/metabolismo , Distribuição Tecidual
11.
Poult Sci ; 93(4): 959-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24706974

RESUMO

Manganese is an essential microelement. Manganese deficiency affects reproduction performance and reproductive hormones in layers. However, little is known about its effects and the possible mechanism in regulating reproduction in broiler breeder hens. In the current study, broiler breeder hens at peak production were fed with diets supplemented with 0, 120, or 240 mg of Mn/kg as MnSO4 or Mn proteinate for 13 wk. Manganese supplementation did not alter egg laying rate, egg weight, fertility, hatchability, or hatchling weight over a 13-wk trial period. However, 240 mg of Mn/kg supplementation significantly increased serum Mn (P < 0.05). Manganese supplements increased the eggshell breaking strength (P < 0.05) without affecting the eggshell thickness. There was no difference in serum cholesterol and estradiol. Expression of follicle-stimulating hormone) and gonadotropin-releasing hormone-I (GnRH-I) genes was significantly elevated by 240 mg of Mn/kg (P < 0.05). Furthermore, inorganic Mn supplementation doubled GnRH-I expression compared with supplementation with the organic form (P < 0.05), although serum Mn was comparable between these 2 supplements. No obvious difference was shown in gene expression of luteinizing hormone, prolactin, GnRH-I receptor, inducible NO synthase, and dopamine receptor D1 in the pituitary as well as tyrosine hydroxylase and inducible NO synthase in the hypothalamus. This suggests that dietary Mn supplementation could improve eggshell quality in the long term. The central mechanism of nontoxic high doses of Mn suggested the transcriptional activation of GnRH-I and follicle-stimulating hormone genes. The central effect of inorganic Mn activating GnRH-I genes compared with the reduced effect by organic Mn could possibly be due to a decreased capacity of the latter passing through the blood-brain barrier.


Assuntos
Proteínas Aviárias/genética , Galinhas/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Manganês/metabolismo , Reprodução/efeitos dos fármacos , Ração Animal/análise , Animais , Proteínas Aviárias/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Casca de Ovo/efeitos dos fármacos , Casca de Ovo/fisiologia , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Manganês/administração & dosagem , Manganês/química , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Reação em Cadeia da Polimerase/veterinária
12.
Poult Sci ; 103(9): 103929, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38943802

RESUMO

This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.

13.
Poult Sci ; 103(5): 103622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513550

RESUMO

Ammonia (NH3) is a toxic gas that in intensive poultry houses, damages the poultry health and induces various diseases. This study investigated the effects of NH3 exposure (0, 15, 30, and 45 ppm) on growth performance, serum biochemical indexes, antioxidative indicators, tracheal and lung impairments in Pekin ducks. A total of 288 one-day-old Pekin male ducks were randomly allocated to 4 groups with 6 replicates and slaughtered after the 21-d test period. Our results showed that 45 ppm NH3 significantly reduced the average daily feed intake (ADFI) of Pekin ducks. Ammonia exposure significantly reduced liver, lung, kidney, and heart indexes, and lowered the relative weight of the ileum. With the increasing of in-house NH3, serum NH3 and uric acid (UA) concentrations of ducks were significantly increased, as well as liver malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX-Px) contents. High NH3 also induced trachea and lung injury, thereby increasing levels of tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in the lung, and decreasing the mRNA expressions of zonula occludens 1 (ZO-1) and claudin 3 (CLDN3) in the lung. In conclusion, in-house NH3 decrease the growth performance in ducks, induce trachea and lung injuries and meanwhile increase the compensatory antioxidant activity for host protection.


Assuntos
Amônia , Patos , Estresse Oxidativo , Doenças das Aves Domésticas , Animais , Patos/fisiologia , Patos/crescimento & desenvolvimento , Amônia/toxicidade , Amônia/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/metabolismo , Distribuição Aleatória , Abrigo para Animais , Relação Dose-Resposta a Droga
14.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509085

RESUMO

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Assuntos
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleosídeos , Lactobacillus , Prolina , Purinas
15.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630704

RESUMO

In total, two experiments were conducted to evaluate the effectiveness of an in vitro digestion method for predicting the metabolizable energy (ME) and metabolizability of gross energy (ME/GE) values using in vitro digestible energy (IVDE) and the digestibility of gross energy (IVDE/GE) content, respectively, of conventional feedstuffs for Muscovy ducks. In experiment 1, the apparent metabolizable energy (AME), true metabolizable energy (TME), AME/GE, and TME/GE of eight-grain feedstuff samples (two corn samples, three sorghum samples, and three barley samples) and eight protein feedstuff samples (two soybean meal samples, three cottonseed meal samples, and three rapeseed meal samples) were determined by the tube-feeding method with six different ducks for each sample. In experiment 2, a computer-controlled simulated digestion system (CCSDS) contain simulated digestive fluid was used to determine the enzymatic hydrolysis energy value of feedstuffs, which was defined as IVDE in our study. The simulated gastric fluid containing pepsin and simulated small intestinal fluid containing amylase, trypsin, and chymotrypsin for the in vitro gastric and intestinal digestion, respectively. The IVDE and in vitro digestibility of GE (IVDE/GE) of 16 feedstuff samples were determined using the CCSDS with five replicates per sample. The results showed that the IVDE and IVDE/GE were positively correlated with ME and ME/GE of feedstuffs, respectively. The coefficient of determination of eight regression models in predicting ME (grain feedstuffs: AME = 1.050 × IVDE- 0.9293, TME = 1.032 × IVDE + 0.6478; protein feedstuffs: AME = 1.331 × IVDE- 6.685, TME = 1.269 × IVDE-3.490) and ME/GE (grain feedstuffs: AME/GE = 1.069 × IVDE/GE- 6.516, TME/GE = 1.068 × IVDE/GE + 0.7764; protein feedstuffs: AME/GE = 1.093 × IVDE/GE -19.21, TME/GE = 1.196 × IVDE/GE - 13.25) of feedstuffs for Muscovy ducks ranged from 0.8610 to 0.9921. The accuracy of the regression model was acceptable as the difference between measured and predicted ME and ME/GE values was less than 0.45 MJ/kg (100 kcal/kg) and 2.62% for 14 of the 16 feed samples, respectively. In conclusion, the in vitro digestion method can be used to predict the ME and ME/GE of conventional feedstuffs for Muscovy ducks with acceptable accuracy.


Metabolizable energy (ME) is one of the major factors in formulating diets for ducks and most studies on the ME values of ingredients have been conducted on Peking ducks, with limited research on Muscovy ducks. Compared with the time-consuming in vivo digestion method, in vitro simulating digestion as a rapid and reliable method has been performed to predict ME and metabolizability of gross energy. Therefore, the precision of the in vitro digestion method was evaluated for Muscovy duck feed in our study.


Assuntos
Ração Animal , Patos , Animais , Patos/metabolismo , Ração Animal/análise , Metabolismo Energético , Fenômenos Fisiológicos da Nutrição Animal , Grão Comestível , Digestão , Dieta/veterinária
16.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259767

RESUMO

In this study, the efficacy of different nonstarch polysaccharide (NSP) enzyme sources on wheat ingredients and wheat basal diets in vitro were evaluated by simulating the avian digestive tract. In Exp. 1, pH level was increased from 2.0 to 8.0 by simulating the avian digestive tract. The relative enzyme activities of xylanase A, B, and C and ß-glucanase X at pH 3.0-3.5 were higher (P < 0.05) than those at pH 2.0 or 7.0-8.0. The optimal pH levels of 3.5 and 7.0 were screened by simulating the proventriculus and small intestine, respectively to evaluate the efficacy of NSP enzyme on wheat sources. In Exp. 2, wheat 1 contained the highest content of NSP fractions and the lowest digestibility in vitro dry matter (IVDMD) and energy (IVED) in wheat samples. Therefore, wheat 1 was selected for hydrolysis research under different NSP enzyme sources and levels (1,500, 4,500, 13,500, 40,500, 121,500 U xylanase/kg and 250, 500, 1,000, 2,000, 4,000 U ß-glucanase/kg) in vitro. The hydrolysis of wheat on the basis of the released reducing sugar content was determined by xylanase sources A > B > C (P < 0.05) and ß-glucanase sources of X > Y (P < 0.05). On the basis of the hydrolysis, the optimum dose of xylanase A and ß-glucanase X were 40,500 U/kg and 2,000 U/kg, respectively. Subsequently, the completely randomized designs involving 2 NSP enzymes treatments × 2 endogenous digestive enzymes treatments (Exp. 3), as well as 2 wheat basal diets × 2 NSP enzymes treatments (Exp. 4) were used to evaluate the efficacy of NSP enzymes on dietary nutrient digestibility. The addition of NSP enzymes (40,500 U xylanase A/kg and 2,000 U ß-glucanase X/kg) increased the IVDMD and IVED of wheat 1 without endogenous enzymes (P < 0.05), while the IVDMD and IVED of wheat 1 with endogenous enzyme were only slightly increased (P > 0.05). The addition of NSP enzymes could increase the IVDMD and IVED of corn-wheat-soybean meal diet (P < 0.05), but had no effect on those of wheat-cottonseed meal rapeseed meal diet (P > 0.05). In conclusion, xylanase and ß-glucanase additions could effectively eliminate the adverse effects on wheat and wheat basal diets at the optimal pH levels of 3.5 and 7.0 by simulating the proventriculus and small intestine parts, respectively. The efficacy of NSP enzymes was influenced by the enzyme sources, dietary type, and the interaction of endogenous enzymes.


The inclusion level of wheat in poultry feeds is limited by nonstarch polysaccharides (NSP). Feeding NSP will increase the intestinal viscosity and residence time of the digesta, reduce nutrient digestion, and absorption of nutrients by birds, thereby damaging the intestinal function and growth performance. The degradation of NSP in feed by supplementing NSP enzymes has a positive effect on nutrient availability and growth performance. Therefore, there is a need for a quick and reliable method to assess the efficacy of NSP enzymes from different types, sources, and processing techniques. Compared with the expensive and time-consuming in vivo method for animal feeding experiments, in vitro digestion has been proved to be a rapid method for predicting the efficacy of exogenous enzymes in various parts of the avian digestive tract. Therefore, in this study, the efficacy of different NSP enzyme sources on wheat ingredients and wheat basal diets were evaluated in vitro by simulating the avian digestive tract.


Assuntos
Digestão , Triticum , Animais , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais , Endo-1,4-beta-Xilanases/farmacologia , Trato Gastrointestinal , Polissacarídeos/farmacologia , Triticum/química
17.
Anim Nutr ; 12: 321-333, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36733781

RESUMO

Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.

18.
Front Vet Sci ; 10: 1111257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968478

RESUMO

The aim of this study is to evaluate the effects of dietary iron sources on growth performance, iron status and activities of Fe-containing enzymes and gene expression related to iron homeostasis in tissues of weaned pigs. A total of 480 piglets at d 28 (Duroc X Landrace) were allotted to four groups as a factorial arrangement of treatments with 30 pigs/pen (male: female = 1:1) and 4 replicate pens/treatment. The treatments for iron in the diets were: control basal diet (Con); Con + 150 mg Fe/kg as inorganic Fe (iFe); Con + 75 mg Fe/kg as inorganic Fe + 75 mg Fe/kg as organic Fe-peptide complex (iFe+oFe) and Con + 150 mg of Fe/kg as organic Fe-peptide complex (oFe). The feeding trial lasted for 36 days. There were no significant differences in final body weight, ADG, ADFI, and G/F as well as blood hemoglobin and MCHC contents between piglets fed the control and iron-supplemented groups (P > 0.05). The iron supplemented groups exhibited increased iron content in the liver, kidney and spleen as well as the CAT and SDH activities in liver compared to the control group (P < 0.05), while piglets in oFe group experienced greater Fe accumulation and activities of CAT and SDH in the liver than piglets in the iFe group. Compared with the control group, dietary supplementation of iron increased the NCOA4 mRNA expression and decreased the TfR1 mRNA expression in liver of piglets. The TfR1, NCOA4 and Ferritin mRNA expressions of bone marrow in both iFe and iFe+oFe groups were greater than both in the Con and oFe groups. These results suggest that dietary supplementation of iron does not influence the growth performance and hematological parameters in weaned pigs fed a corn-soybean meal basal diet (75.8 mg/kg) from d 28 to d 70, but increased tissue iron status and activities of Fe-containing enzymes at d 70. The addition of organic Fe-peptide complexes presents greater beneficial effects on enhancing tissue Fe accumulation and Fe-containing enzyme activities, which may be involved in different gene expression patterns related to iron intake and transport in tissues of weaned pigs.

19.
J Poult Sci ; 60(2): 2023008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025655

RESUMO

Although the nutrient requirements of geese during the growing stage are known, the dietary requirement of amino acids during the starting period remains unclear. Optimum nutrient supplementation during the starting period is crucial for improved survival rates, body-weight gain, and marketing weight in geese. Our study focused on the effect of dietary tryptophan (Trp) supplementation on the growth performance, plasma parameters, and internal-organ relative weights in 1-28-day-old Sichuan white geese. A total of 1080 1-day-old geese were divided randomly into six Trp-supplemented (0.145%, 0.190%, 0.235%, 0.280%, 0.325%, and 0.370%) groups. Average daily feed intake (ADFI), average daily gain (ADG), and duodenal relative weight were highest in the 0.190% group, brisket protein level and jejunal relative weight in the 0.235% group, and plasma total protein and albumin levels in the 0.325% group (P < 0.05). Dietary Trp supplementation did not significantly affect the relative weights of the spleen, thymus, liver, bursa of Fabricius, kidneys, and pancreas. Moreover, the 0.145% - 0.235% groups showed significantly decreased liver fat (P < 0.05). Based on the non-linear regression analysis of ADG and ADFI, the dietary Trp levels between 0.183% and 0.190% were estimated to be optimal for 1-28-day-old Sichuan white geese. In conclusion, optimal dietary Trp supplementation in 1-28-day-old Sichuan white geese resulted in increased growth performance (0.180% - 0.190%) along with improved proximal intestinal development and brisket protein deposition (0.235%). Our findings provide basic evidence and guidance for optimal levels of Trp supplementation in geese.

20.
J Anim Sci Biotechnol ; 14(1): 125, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684661

RESUMO

BACKGROUND: Ochratoxin A (OTA) is a mycotoxin widely present in raw food and feed materials and is mainly produced by Aspergillus ochraceus and Penicillium verrucosum. Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder, especially Bacteroides plebeius (B. plebeius) overgrowth. However, whether OTA or B. plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown. This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver. MATERIALS AND METHODS: A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups. The control group was given 0.1 mol/L NaHCO3 solution, and the OTA group was given 235 µg/kg body weight OTA for 14 consecutive days. Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics. AMPK-related signaling pathway factors were analyzed by Western blotting and mRNA expression. RESULTS: Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intestinal nicotinuric acid levels, the downstream product of tryptophan metabolism, which were significantly negatively correlated with B. plebeius abundance. In contrast, OTA induced a significant increase in indole-3-acetamide levels, which were positively correlated with B. plebeius abundance. Simultaneously, OTA decreased the levels of ATP, NAD+ and dipeptidase in the liver. Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine, anthranilic acid and nicotinic acid. Moreover, OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein. CONCLUSION: OTA decreased the level of nicotinuric acid in the intestinal tract, which was negatively correlated with B. plebeius abundance. The abnormal metabolism of tryptophan led to a deficiency of NAD+ and ATP in the liver, which in turn activated the AMPK signaling pathway. Our results provide new insights into the toxic mechanism of OTA, and tryptophan metabolism might be a target for prevention and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA