Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(26)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33730705

RESUMO

We investigated the microstructures of carbon nanotube (CNT) films and the effect of CNT length on their mechanical performance. 230 µm-, 300 µm-, and 360 µm- long CNTs were grown and used to fabricate CNT films by a winding process. Opposite from the length effect on CNT fibers, it has been found that the mechanical properties of the CNT films decrease with increasing CNT length. Without fiber twisting, short CNTs tend to bundle together tightly by themselves in the film structure, resulting in an enhanced packing density; meanwhile, they also provide a high degree of CNT alignment, which prominently contributes to high mechanical properties of the CNT films. When CNTs are long, they tend to be bent and entangled, which significantly reduce their packing density, impairing the film mechanical behaviors severely. It has also been unveiled that the determinant effect of the CNT alignment on the film mechanical properties is more significant than that of the film packing density. These findings provide guidance on the optimal CNT length when attempting to fabricate high-performance macroscopic CNT assemblies.

2.
Proc Natl Acad Sci U S A ; 111(20): 7197-201, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799688

RESUMO

Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.


Assuntos
Teste de Materiais , Metais/química , Fenômenos Biofísicos , Dureza , Microscopia Eletrônica de Transmissão/métodos , Nanoestruturas/química , Pressão , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração
3.
Small ; 10(22): 4606-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25123967

RESUMO

Assembly of carbon nanotubes (CNTs) in effective and productive ways is of vital importance to their application. Recent progress in synthesis of CNTs has inspired new strategies for utilizing the unique physiochemical properties of CNTs in macroscale materials and devices. Assembling CNTs by dry processes (e.g., directly collecting CNTs in the form of freestanding films followed by pressing, stretching, and multilayer stacking instead of dispersing them in solution) not only considerably simplifies the processes but also avoids structural damage to the CNTs. Various dry-processable CNTs are reviewed, focusing on their synthesis, properties, and applications. The synthesis techniques are organized in terms of aggregative morphologies and microstructure control of CNTs. Important applications such as functional thin-film devices, strong CNT films, and composites are included. The opportunities and challenges in the synthesis techniques and fabrication of advanced composites and devices are discussed.

4.
ACS Appl Mater Interfaces ; 15(27): 32656-32666, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384459

RESUMO

Stress graphitization is a unique phenomenon at the carbon nanotube (CNT)-matrix interfaces in CNT/carbon matrix (CNT/C) composites. A lack of fundamental atomistic understanding of its evolution mechanisms and a gap between the theoretical and experimental research have hindered the pursuit of utilizing this phenomenon for producing ultrahigh-performance CNT/C composites. Here, we performed reactive molecular dynamics simulations along with an experimental study to explore stress graphitization mechanisms of a CNT/polyacrylonitrile (PAN)-based carbon matrix composite. Different CNT contents in the composite were considered, while the nanotube alignment was controlled in one direction in the simulations. We observe that the system with a higher CNT content exhibits higher localized stress concentration in the periphery of CNTs, causing alignment of the nitrile groups in the PAN matrix along the CNTs, which subsequently results in preferential dehydrogenation and clustering of carbon rings and eventually graphitization of the PAN matrix when carbonized at 1500 K. These simulation results have been validated by experimentally produced CNT/PAN-based carbon matrix composite films, with transmission electron microscopy images showing the formation of additional graphitic layers converted by the PAN matrix around CNTs, where 82 and 144% improvements of the tensile strength and Young's modulus are achieved, respectively. The presented atomistic details of stress graphitization can provide guidance for further optimizing CNT-matrix interfaces in a more predictive and controllable way for the development of novel CNT/C composites with high performance.

5.
ACS Appl Mater Interfaces ; 10(9): 8197-8204, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429334

RESUMO

Carbon nanotube (CNT) fiber has not shown its advantage as next-generation light-weight conductor due to the large contact resistance between CNTs, as reflected by its low conductivity and ampacity. Coating CNT fiber with a metal layer like Cu has become an effective solution to this problem. However, the weak CNT-Cu interfacial bonding significantly limits the mechanical and electrical performances. Here, we report that a strong CNT-Cu interface can be formed by introducing a Ni nanobuffer layer before depositing the Cu layer. The Ni nanobuffer layer remarkably promotes the load and heat transfer efficiencies between the CNT fiber and Cu layer and improves the quality of the deposited Cu layer. As a result, the new composite fiber with a 2 µm thick Cu layer can exhibit a superhigh effective strength >800 MPa, electrical conductivity >2 × 107 S/m, and ampacity >1 × 105 A/cm2. The composite fiber can also sustain 10 000 times of bending and continuously work for 100 h at 90% ampacity.

6.
J Phys Chem B ; 110(28): 13926-30, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16836343

RESUMO

Here, we report a simple and efficient way for organizing carbon nanotubes, in particular, single-wall carbon nanotubes (SWNTs) into ordered structures from their dilute solutions. It was found that drying a droplet of carbon nanotube solution at room temperature on a wettable surface such as glass or silica wafer led to redistribution, accumulation, and organization of carbon nanotubes along the perimeter of the droplet. Unlike the aggregation behaviors of colloid nanoparticles, anistropic carbon nanotubes tended to show two orientations in a ring deposit: one parallel to the outer perimeter of the ring and the other normal to it in the interior. Drying droplets of SWNT solutions at high temperatures exhibited a long-range ordered structure. In addition, droplet drying may cause size separation of carbon nanotubes and pattern formation through interactions between droplets. This result helps us not only to further understand fluid dynamics during the drying process but also to provide a promising and simple strategy for either assembling carbon nanotubes on a surface or organizing them into well-aligned films and fibers.

7.
ACS Appl Mater Interfaces ; 3(11): 4180-4, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21985010

RESUMO

To synthesize long and uniform vertically aligned carbon nanotube (VACNT) arrays, it is essential to use catalytic nanoparticles (NPs) with monodisperse sizes and to avoid NP agglomeration at the growth temperature. In this work, VACNT arrays were grown on chemically synthesized Fe(3)O(4) NPs of diameter 6 nm by chemical vapor deposition. Coating the NPs with a thin layer of Al(2)O(3) prior to CNT growth preserves the monodisperse sizes, resulting in uniform, thick and dense VACNT arrays. Comparison with uncoated NPs shows that the Al(2)O(3) coating effectively prevents the catalyst NPs from sintering and coalescing, resulting in improved control over VACNT growth.


Assuntos
Óxido de Alumínio/química , Compostos Férricos/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Catálise
8.
Nat Mater ; 6(4): 283-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369833

RESUMO

Single-walled carbon nanotubes (SWNTs) possess superior electronic and physical properties that make them ideal candidates for making next-generation electronic circuits that break the size limitation of current silicon-based technology. The first critical step in making a full SWNT electronic circuit is to make SWNT intramolecular junctions in a controlled manner. Although SWNT intramolecular junctions have been grown by several methods, they only grew inadvertently in most cases. Here, we report well-controlled temperature-mediated growth of intramolecular junctions in SWNTs. Specifically, by changing the temperature during growth, we found that SWNTs systematically form intramolecular junctions. This was achieved by a consistent variation in the SWNT diameter and chirality with changing growth temperature even though the catalyst particles remained the same. These findings provide a potential approach for growing SWNT intramolecular junctions at desired locations, sizes and orientations, which are important for making SWNT electronic circuits.

9.
Phys Rev Lett ; 94(1): 016802, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698112

RESUMO

Confocal Raman spectral imaging results are presented for a metal-to-semiconductor intramolecular junction (IMJ) on an isolated carbon nanotube. Spectra observed at the junction are consistent with the symmetry lowering expected from the occurrence of pentagon-heptagon defects to produce the chirality shift. The IMJ transition zone is sharp and preserves the nanotube diameter. These results have significant implications for the future use of IMJs as electronic devices, including how prevalent these structures are and how their growth may be rationally targeted. Raman imaging has been demonstrated to be a powerful tool for IMJ studies and provides a more accessible method for further studies of IMJ structure and growth.

10.
Nat Mater ; 3(6): 351-2, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15173850
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA