Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell Probes ; 75: 101958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518900

RESUMO

OBJECTIVE: The effects of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-exos) on serum metabolites and intestinal microbiota in rats after liver trauma were discussed. METHODS: Adult Wistar Albino rats were assigned into control, model (liver trauma), MSCs, and MSC-exos groups (n = 6). The study examined changes in the inflammatory environment in liver tissues were analyzed by histological examination and analysis of macrophage phenotypes. Alterations in serum metabolites were determined by untargeted metabonomics, and gut microbiota composition was characterized by 16S rDNA sequencing. Correlations between specific gut microbiota, metabolites, and inflammatory response were calculated using Spearman correlation analysis. RESULTS: Rats with liver trauma after MSCs and MSC-exos treatment exhibited attenuated inflammatory infiltration and necrosis in liver tissues. MSCs and MSC-exos treatment reduced the proportion of M1 macrophages, accompanied by a decrease in inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels. Furthermore, MSCs and MSC-exos treatment expanded the proportion of M2 macrophages, accompanied by an increase in arginase-1 (Arg-1) and interleukin-10 (IL-10) levels. The beneficial effects of MSC-exo treatment on rats with liver trauma were superior to those of MSC treatment. The composition and abundance of the gut microbiota and metabolites were altered in pathological rats, whereas MSC and MSC-exo intervention partially restored specific gut microbiota and metabolite alterations. At the phylum level, alterations in Bacteroidota, Proteobacteria, and Verrucomicrobiota were observed after MSC and MSC-exo intervention. At the genus level, Intestinimonas, Alistipes, Aerococcus, Faecalibaculum, and Lachnospiraceae_ND3007_group were the main differential microbiota. 6-Methylnicotinamide, N-Methylnicotinamide, Glutathione, oxidized, ISOBUTYRATE, ASCORBATE, EICOSAPENTAENOATE, GLYCEROL 3-PHOSPHATE, and Ascorbate radical were selected as important differential metabolites. There was a clear correlation between Ascorbate, Intestinimonas/Faecalibaculum and inflammatory cytokines. CONCLUSION: MSC-exos promoted the repair of tissue damage in rats with liver trauma by regulating serum metabolites and intestinal microbiota, providing new insights into how MSC-exos reduced inflammation in rats with liver trauma.


Assuntos
Exossomos , Microbioma Gastrointestinal , Fígado , Células-Tronco Mesenquimais , Ratos Wistar , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fígado/metabolismo , Fígado/patologia , Ratos , Masculino , Cicatrização , Macrófagos/metabolismo , Inflamação/metabolismo
2.
Nano Lett ; 23(16): 7508-7515, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37477210

RESUMO

Practical approaches to the synthesis of atomically precise metal nanoclusters are in high demand as they provide the structural basis for investigating nanomaterials' structure-property correlations with atomic precision. The Brust-Schiffrin method has been widely used, while the essential reductive ligands (e.g., thiols) limit the application of this method for synthesizing metal nanoclusters with specific frameworks and surface ligands. In this work, we developed a photochemical route for synthesizing atomically precise metal nanoclusters by applying disulfide, which is a widely available, stable, and environmentally friendly sulfur source. This method enables the construction of structurally diverse metal nanoclusters and especially features the synthesis of PhS-protected metal nanoclusters that were not easily achieved previously and the gram-scale synthesis. A reduction-oxidation cascade mechanism has been revealed for the photochemical route. This work is expected to open up new opportunities for metal nanocluster synthesis and will contribute to the practical applications of this kind of nanomaterial.

3.
J Am Chem Soc ; 145(22): 12164-12172, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235477

RESUMO

Atomically precise metal nanoclusters have received tremendous attention due to their unique structures and properties. Although synthetic approaches to this kind of nanomaterial have been well developed, methods toward precision functionalization of the as-synthesized metal nanoclusters are extremely limited, hindering their interfacial modification and related performance improvement. Herein, an amidation strategy has been developed for the precision functionalization of the Au11 nanocluster based on preorganized nitrogen sites. The nanocluster amidation did not change the number of gold atoms in the Au11 kernel and their bonding mode to the surface ligands but slightly modified the arrangement of gold atoms with the introduction of functionality and chirality, thus representing a relatively mild method for the modification of metal nanoclusters. The stability and oxidation barrier of the Au11 nanocluster are also improved accordingly. The method developed here would be a generalizable strategy for the precision functionalization of metal nanoclusters.

4.
BMC Cancer ; 23(1): 1044, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904102

RESUMO

BACKGROUND: Pancreatic cancer is a highly lethal disease with no effective treatments. Lactobacillus casei (L. casei) and Lactobacillus reuteri (L. reuteri) exhibited therapeutic effects on several cancers, but their roles in pancreatic cancer are unknown. This study aims to explore how L. casei & L. reuteri influence pancreatic cancer and the underlying mechanisms. METHODS: Pancreatic cancer cells were treated with L. casei & L. reuteri and co-cultured with macrophages in a transwell system in vitro. Pancreatic cancer xenograft model was established and L. casei & L. reuteri was used to treat mice in vivo. MTT, CCK-8 assay or immunohistochemical staining were used to determine the proliferation of pancreatic cancer cells or tumor tissues. Transwell assay was applied to test the migration and invasion of pancreatic cells. RT-qPCR was utilized to assess TLR4 and MyD88 expressions in pancreatic cells or tumor tissues. WB, immunofluorescence staining, or flow cytometry was used to evaluate the M1/M2 polarization of macrophages. Besides, the composition of gut microbiota of tumor-bearing mice was determined by 16 S rRNA sequencing, and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) untargeted metabolomics was used to evaluate the metabolic profiles of feces. RESULTS: L. casei & L. reuteri inhibited the proliferation, migration, invasion of pancreatic cancer cells and pancreatic cancer cell-induced M2 polarization of macrophages by suppressing TLR4. Meanwhile, L. casei & L. reuteri repressed pancreatic cancer growth and promoted M1 macrophage polarization. Besides, L. casei & L. reuteri reduced fecal Alloprevotella and increased fecal azelate and glutamate in nude mice, while TLR4 inhibitor TAK-242 increased Clostridia UCG-014, azelate, uridine, methionine sulfoxide, oxypurinol, and decreased glyceryl monoester in the feces of pancreatic tumor-bearing mice. Fecal oxypurinol and glyceryl monoester levels were positively or negatively associated with gut Clostridia UCG-014 abundance, respectively. CONCLUSION: L. casei & L. reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Limosilactobacillus reuteri , Neoplasias Pancreáticas , Camundongos , Humanos , Animais , Receptor 4 Toll-Like/metabolismo , Camundongos Nus , Cromatografia Líquida , Oxipurinol/metabolismo , Oxipurinol/farmacologia , Espectrometria de Massas em Tandem , Macrófagos/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
5.
BMC Cancer ; 22(1): 1285, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476181

RESUMO

BACKGROUND: Evaluation of treated tumors according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria is an important but time-consuming task in medical imaging. Deep learning methods are expected to automate the evaluation process and improve the efficiency of imaging interpretation. OBJECTIVE: To develop an automated algorithm for segmentation of liver metastases based on a deep learning method and assess its efficacy for treatment response assessment according to the RECIST 1.1 criteria. METHODS: One hundred and sixteen treated patients with clinically confirmed liver metastases were enrolled. All patients had baseline and post-treatment MR images. They were divided into an initial (n = 86) and validation cohort (n = 30) according to the examined time. The metastatic foci on DWI images were annotated by two researchers in consensus. Then the treatment responses were assessed by the two researchers according to RECIST 1.1 criteria. A 3D U-Net algorithm was trained for automated liver metastases segmentation using the initial cohort. Based on the segmentation of liver metastases, the treatment response was assessed automatically with a rule-based program according to the RECIST 1.1 criteria. The segmentation performance was evaluated using the Dice similarity coefficient (DSC), volumetric similarity (VS), and Hausdorff distance (HD). The area under the curve (AUC) and Kappa statistics were used to assess the accuracy and consistency of the treatment response assessment by the deep learning model and compared with two radiologists [attending radiologist (R1) and fellow radiologist (R2)] in the validation cohort. RESULTS: In the validation cohort, the mean DSC, VS, and HD were 0.85 ± 0.08, 0.89 ± 0.09, and 25.53 ± 12.11 mm for the liver metastases segmentation. The accuracies of R1, R2 and automated segmentation-based assessment were 0.77, 0.65, and 0.74, respectively, and the AUC values were 0.81, 0.73, and 0.83, respectively. The consistency of treatment response assessment based on automated segmentation and manual annotation was moderate [K value: 0.60 (0.34-0.84)]. CONCLUSION: The deep learning-based liver metastases segmentation was capable of evaluating treatment response according to RECIST 1.1 criteria, with comparable results to the junior radiologist and superior to that of the fellow radiologist.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Critérios de Avaliação de Resposta em Tumores Sólidos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia
6.
Cancer Imaging ; 23(1): 7, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650584

RESUMO

BACKGROUND: The evaluation of treatment response according to METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P) criteria is an important but time-consuming task for patients with advanced prostate cancer (APC). A deep learning-based algorithm has the potential to assist with this assessment. OBJECTIVE: To develop and evaluate a deep learning-based algorithm for semiautomated treatment response assessment of pelvic lymph nodes. METHODS: A total of 162 patients who had undergone at least two scans for follow-up assessment after APC metastasis treatment were enrolled. A previously reported deep learning model was used to perform automated segmentation of pelvic lymph nodes. The performance of the deep learning algorithm was evaluated using the Dice similarity coefficient (DSC) and volumetric similarity (VS). The consistency of the short diameter measurement with the radiologist was evaluated using Bland-Altman plotting. Based on the segmentation of lymph nodes, the treatment response was assessed automatically with a rule-based program according to the MET-RADS-P criteria. Kappa statistics were used to assess the accuracy and consistency of the treatment response assessment by the deep learning model and two radiologists [attending radiologist (R1) and fellow radiologist (R2)]. RESULTS: The mean DSC and VS of the pelvic lymph node segmentation were 0.82 ± 0.09 and 0.88 ± 0.12, respectively. Bland-Altman plotting showed that most of the lymph node measurements were within the upper and lower limits of agreement (LOA). The accuracies of automated segmentation-based assessment were 0.92 (95% CI: 0.85-0.96), 0.91 (95% CI: 0.86-0.95) and 75% (95% CI: 0.46-0.92) for target lesions, nontarget lesions and nonpathological lesions, respectively. The consistency of treatment response assessment based on automated segmentation and manual segmentation was excellent for target lesions [K value: 0.92 (0.86-0.98)], good for nontarget lesions [0.82 (0.74-0.90)] and moderate for nonpathological lesions [0.71 (0.50-0.92)]. CONCLUSION: The deep learning-based semiautomated algorithm showed high accuracy for the treatment response assessment of pelvic lymph nodes and demonstrated comparable performance with radiologists.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Algoritmos , Linfonodos/diagnóstico por imagem , Pelve/diagnóstico por imagem
7.
RSC Adv ; 13(3): 2057-2069, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712602

RESUMO

Mycoplasma pneumoniae (MP) is one of the most common pathogenic organisms causing upper and lower respiratory tract infections, lung injury, and even death in young children. Toll-like receptors (TLRs) play an important role in innate immunity by allowing the host to recognize pathogens invading the body. Previous studies demonstrated that TLR4 is a potential therapeutic target for the treatment of MP pneumonia. Therefore, the present study aimed to screen biologically active ingredients that target the TLR4 receptor pathway. We first used molecular docking to screen out the active compounds inhibiting the TLR4 pathway, and then used regression and classification machine learning algorithms to establish a quantitative structure-activity relationship (QSAR) model to predict the biological activity of the screened compounds. A total of 78 molecules were used in QSAR modelling, which were retrieved from the ChEMBL database. The QSAR models had acceptable correlation coefficients of R 2 on the training and testing dataset in the range of 0.96 to 0.91 and 0.93 to 0.76, respectively. The multiclass classification models showed accuracy on training and testing data within ranges of 1.0 to 0.70, 0.96 to 0.63, and log loss ranges from 0.27 to 8.63, respectively. In addition, molecular descriptors and fingerprints have been studied as structural elements involved in increased and decreased inhibitory activities. These results provide a quantitative analysis of QSAR and classification models applicable for high-throughput screening, as well as insights into the mechanisms of inhibition of TLR4 antagonists.

8.
Nanoscale ; 15(47): 19079-19084, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009073

RESUMO

Four group 10 metal nanoclusters, Ni10(4-MePhS)20, Ni11(PhS)22, Pd9(PhS)18 and Pd10(PhS)20 were synthesized from disulfides based on a photochemical reduction-oxidation cascade process, which proceeds via a different mechanism to that of the conventional two-step reduction process. The as-obtained nanoclusters possess oxidative resistance and structural robustness under different conditions. Their atomically precise structures are determined to be nickel or palladium rings in which the metal atoms are bridged by Ar-S groups. Their catalytic performance in oxygen reduction reaction was compared, and the ring size-dependent catalytic activity of the group 10 metal nanoclusters was revealed. This work provides an efficient route to atomically precise and structurally stable group 10 metal nanoclusters, and sheds light on their further applications in electrocatalysis.

9.
BMC Mol Cell Biol ; 23(1): 42, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175845

RESUMO

BACKGROUND: COVID-19 is a disease caused by SARS-CoV-2, which can cause mild to serious infections in humans. We aimed to explore the effect of growth hormone (GH)/estrogen/androgen in normal human lung epithelial BEAS-2B cells on COVID-19-type proinflammatory responses. METHODS: A BEAS-2B COVID-19-like proinflammatory cell model was constructed. After that, the cells were treated with GH, 17ß-estradiol (E2), and testosterone (Tes) for 24 h. CCK-8 assays were utilized to evaluate cell viability. The mRNA expression of ACE2, AGTR1, TMRRSS2, and ISG15 and the protein expression of ACE2, AGTR1, TMRRSS2, and ISG15 were measured by qRT‒PCR and Western blotting, respectively. ELISAs were performed to determine IL-6, MCP-1, MDA and SOD expression. Flow cytometry was used to measure ROS levels. Finally, MAPK/NF-κB pathway-related factor expression was evaluated. RESULTS: The COVID-19-type proinflammatory model was successfully constructed, and 1000 ng/mL RBD treatment for 24 h was selected as the condition for the model group for subsequent experiments. After RBD treatment, cell viability decreased, the mRNA expression of ACE2, AGTR1, TMRRSS2, and ISG15 and the protein expression of ACE2, AGTR1, TMRRSS2, and ISG15 increased, IL-6, MCP-1, MDA and ROS levels increased, and MDA levels decreased. The mRNA levels of MAPK14 and RELA increased, but the protein levels did not change significantly. In addition, phospho-MAPK14 and phospho-RELA protein levels were also increased. Among the tested molecules, E2 had the most pronounced effect, followed by GH, while Tes showed the opposite effect. CONCLUSION: GH/E2 alleviated inflammation in a COVID-19-type proinflammatory model, but Tes showed the opposite effect.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteína Quinase 14 Ativada por Mitógeno , Androgênios , Enzima de Conversão de Angiotensina 2 , Estradiol/farmacologia , Estrogênios , Hormônio do Crescimento , Humanos , Interleucina-6 , Pulmão , NF-kappa B , Espécies Reativas de Oxigênio , SARS-CoV-2 , Sincalida , Superóxido Dismutase , Testosterona
10.
Stem Cells Int ; 2022: 7538025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222648

RESUMO

Intervertebral disc (IVD) degenerative disease is a common health problem worldwide. Administration of mesenchymal stem cells (MSCs) in intervertebral disc degeneration (IVDD) has been widely explored in recent years. However, transplantation of MSCs is restricted by several factors. Currently, paracrine signaling is one of the main mechanisms by which MSCs play a therapeutic role in disc regeneration. Extracellular vehicles (EVs) are the main paracrine products of MSCs. They show great potential as an effective alternative to MSCs and play immunomodulation roles such as anti-inflammatory effects, antioxidative stress, antiapoptosis, and antiextracellular matrix (ECM) degradation during treatment of IVDD. This review focuses on the immunomodulatory effect of MSC EVs and their potential applications.

11.
Cancer Med ; 11(22): 4283-4296, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35674129

RESUMO

BACKGROUND & AIMS: Capsaicin, a functional component of chili pepper, possesses anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to determine the property of capsaicin against hepatocarcinogenesis in vivo and investigate the role of the SIRT1/SOX2 pathway in the mode of action of capsaicin in hepatic progenitor cells (HPCs), which is related to hepatocarcinogenesis. MATERIALS & METHODS: We prepared a diethylnitrosamine-induced liver cancer model in rats to examine hepatocarcinogenesis, and delivered liposomal capsaicin through the subcutaneous transposition of the spleen to the liver. Liver sections from rats and hepatocarcinoma patients were stained for the markers of HPCs or SIRT1/SOX2 signaling. SIRT1/SOX2 signalling expression was measured using immunoprecipitation and western blot. RESULTS: We found that capsaicin significantly inhibited hepatocarcinogenesis. Notably, capsaicin inhibited HPCs activation in vivo but did not induce apoptosis in the normal hepatic progenitor cell line in rats in vitro. This suggests that capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of HPCs. Moreover, capsaicin can induce this inhibition by reducing the stability of SOX2. SIRT1 is overexpressed in liver cancer and acts as a tumor promoter via SOX2 deacetylation. Using immunoprecipitation, we identified direct binding between SIRT1 and SOX2. The capsaicin treatment resulted in SIRT1 downregulation which reduced deacetylation, and increased nuclear export as well as subsequent ubiquitous degradation of SOX2. CONCLUSIONS: Altogether, we report that capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of HPCs via SIRT1/SOX2 signaling. It may serve as a promising therapeutic candidate for liver cancer.


Assuntos
Neoplasias Hepáticas , Fatores de Transcrição SOXB1 , Sirtuína 1 , Animais , Ratos , Capsaicina/farmacologia , Carcinogênese , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição SOXB1/metabolismo
12.
J Oncol ; 2021: 2676996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630563

RESUMO

BACKGROUND: Tumor necrosis factor (TNF) family members play a vital role in anticancer therapy. This study aimed to screen the critical markers for the prognostic analysis of pancreatic adenocarcinoma (PAAD) by analyzing the clustering patterns of TNF family members in PAAD. METHODS: In this study, the NMF clustering method was adopted to cluster samples from The Cancer Genome Atlas (TCGA) to acquire the clustering pattern of the TNF family in PAAD. Differential gene analysis was performed according to TNF family gene clusters. The support vector machine (SVM) method was conducted for further gene screening, and the risk score model of the screened genes was constructed by Lasso. The single sample gene set enrichment analysis (ssGSEA) method was adopted for immunoenrichment analysis and tumor immune cycle analysis. Genes associated with risk scores were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS: We clustered PAAD into two groups based on TNF family genes. Nineteen TNF family genes were significantly associated with the clinical characteristics of PAAD patients. The risk score formula was composed of RHOD, UBE2C, KLHDC7b, MSLN, ADAM8, NME3, GNG2, and MCOLN3. GSE57495 and GSE62452 datasets verified that patients in the high-risk group had a worse prognosis than those in the low-risk group. The risk score-related genes analyzed by GO and KEGG were mainly involved in the modulation of chemical synaptic transmission and synaptic vesicle cycle pathway. There were significant differences in the expression of 15 immune cells between the high-risk group and the low-risk group. The risk score was positively correlated with HCK, interferon, MHC-I, and STAT1. The expression of genes relevant to chemokine, immunostimulator, MHC, and receptor was strongly associated with the risk score. CONCLUSION: The risk score model based on the TNF family can predict the prognosis and immune status of PAAD patients. Further research is needed to verify the clinical prognostic value of risk scores.

13.
Int Immunopharmacol ; 97: 107613, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33962226

RESUMO

Mechanical unloading-induced bone loss is a clinical challenge, and deep understanding for this disease is necessary for developing novel and effective therapies. MicroRNAs (miRNAs) are small non-coding RNAs, and involved in bone remodeling. In the study, we attempted to explore the potential of miR-133a in regulating osteoblast activation and its anti-osteopenia function both in vitro and in vivo. Our in vitro studies at first showed that miR-133a could significantly promote the expression of osteocalcin (OCN), Collagen I, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osterix (Osx), promoting the activation and mineralization of osteoblasts. Then, hindlimb unloading (HU)-challenged mice were established with or without intravenous injection of agomir-miR-133a using an osteoblast-targeting delivery system. We found that miR-133a in osteoblasts significantly alleviated the bone loss, microstructural, and biomechanical property in mice with mechanical unloading, contributing to osteopenia alleviation. Furthermore, both in vitro and in vivo experiments showed that miR-133a could restrain osteoclastogenesis via tartrate-resistant acid phosphatase (TRAP) staining. In conclusion, our results suggested that miR-133a may be a promising factor in mediating the occurrence and progression of osteopenia caused by mechanical unloading, and thus targeting miR-133a could be considered as an effective therapeutic strategy for the suppression of pathological osteopenia.


Assuntos
Doenças Ósseas Metabólicas/genética , MicroRNAs/metabolismo , Osteoblastos/patologia , Animais , Doenças Ósseas Metabólicas/diagnóstico , Doenças Ósseas Metabólicas/patologia , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Fêmur/patologia , Humanos , Masculino , Camundongos , MicroRNAs/agonistas , Osteoblastos/metabolismo , Osteogênese/genética , Microtomografia por Raio-X
14.
Stem Cell Res Ther ; 12(1): 239, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853670

RESUMO

Adipose-derived stem cell (ADSC) is one of the most widely used candidate cell for intervertebral disc (IVD) degeneration-related disease. However, the poor survival and low differentiation efficacy in stressed host microenvironment limit the therapeutic effects of ADSC-based therapy. The preconditioning has been found effective to boost the proliferation and the functioning of stem cells in varying pathological condition. Lithium is a common anti-depression drug and has been proved effective to enhance stem cell functioning. In this study, the effects of preconditioning using LiCl on the cellular behavior of ADSC was investigated, and specially in a degenerative IVD-like condition. METHOD: The cellular toxicity on rat ADSC was assessed by detecting lactate dehydrogenase (LDH) production after treatment with a varying concentration of lithium chloride (LiCl). The proliferative capacity of ADSC was determined by detecting Ki67 expression and the relative cell number of ADSC. Then, the preconditioned ADSC was challenged by a degenerative IVD-like condition. And the cell viability as well as the nucleus pulpous (NP) cell differentiation efficacy of preconditioned ADSC was evaluated by detecting the major marker expression and extracellular matrix (ECM) deposit. The therapeutic effects of preconditioned ADSC were evaluated using an IVD degeneration rat model, and the NP morphology and ECM content were assessed. RESULTS: A concentration range of 1-10 mmol/L of LiCl was applied in the following study, since a higher concentration of LiCl causes a major cell death (about 40%). The relative cell number was similar between preconditioned groups and the control group after preconditioning. The Ki67 expression was elevated after preconditioning. Consistently, the preconditioned ADSC showed stronger proliferation capacity. Besides, the preconditioned groups exhibit higher expression of NP markers than the control group after NP cell induction. Moreover, the preconditioning of LiCl reduced the cell death and promoted ECM deposits, when challenged with a degenerative IVD-like culture. Mechanically, the preconditioning of LiCl induced an increased cellular reactive oxidative species (ROS) level and activation of ERK1/2, which was found closely related to the enhanced cell survival and ECM deposits after preconditioning. The treatment with preconditioned ADSC showed better therapeutic effects than control ADSC transplantation, with better NP preservation and ECM deposits. CONCLUSION: These results suggest that the preconditioning with a medium level of LiCl boosts the cell proliferation and differentiation efficacy under a normal or hostile culture condition via the activation of cellular ROS/ERK axis. It is a promising pre-treatment of ADSC to promote the cell functioning and the following regenerative capacity, with superior therapeutic effects than untreated ADSC transplantation.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Animais , Lítio , Ratos , Espécies Reativas de Oxigênio , Transplante de Células-Tronco
15.
Biomed Res Int ; 2020: 1328436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566653

RESUMO

Intervertebral disc (IVD) degeneration is associated with local inflammation and increased expression of neurotrophins. Acidic microenvironment is believed to cause the progression of IVD degeneration. However, there is a paucity of information regarding the relationship between acidic microenvironment and the inflammation and expression of neurotrophins in IVD. G-protein-coupled receptor 4 (GPR4) is a pH-sensing receptor, which can activate the inflammation and increase the expression levels of nerve growth factor in acidic microenvironment. In this study, culture media with pH 7.2 (representing the normal IVD-like acidic condition) and pH 6.5 (degenerated IVD-like acidic condition) were prepared. The gene and protein expression levels of GPR4 in SD rat nucleus pulposus cells were determined under the acidic conditions. And cyclic AMP (cAMP), the second messenger of GPR4, was assayed. Furthermore, the expression levels of receptor activator of nuclear factor κ B (RANK), RANKL ligand (RANKL), osteoprotegerin (OPG), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were also determined. To clarify the involvement of GPR4 in the upregulation of the expression of RANK/RANKL/OPG system and neurotrophins, gene knockdown and forced expression of GPR4 and inhibiting its downstream cAMP accumulation and Ca2+ mobilization were performed. The alternation of the expression levels of matrix metalloproteinase-3 (MMP-3), MMP-13, and aggrecanase-2 (ADAMTS-5) were evaluated by RT-PCR and western blot. The results showed that GPR4 was expressed in rat nucleus pulposus cells, and the expression was upregulated under the degenerated IVD-like acidic microenvironment. cAMP accumulation levels were increased under the degenerated IVD-like acidic culture conditions. The expression levels of RANK, RANKL, OPG, NGF, and BNDF were significantly upregulated under the degenerated IVD-like acidic microenvironment. GPR4 knockdown and reduction of cAMP by the inhibitor SQ22536 abolished the upregulation of the expression of RANK, RANKL, OPG, NGF, and BNDF under the degenerated IVD-like acidic microenvironment. On the opposite, acidosis-induced cAMP accumulation and upregulation of RANK, RANKL, OPG, NGF, and BNDF were further promoted by GPR4 overexpression. The expression levels of MMP-3, MMP-13, and ADAMTS-5 were upregulated under the degenerated IVD-like acidic condition, which can be promoted or attenuated by GPR4 overexpression or knockdown, respectively. We concluded that GPR4-mediated cAMP accumulation was involved in the increased expression of RANK/RANKL/OPG system and neurotrophins by nucleus pulposus cells under the degenerated IVD-like acidic microenvironment.


Assuntos
Degeneração do Disco Intervertebral/metabolismo , Fatores de Crescimento Neural/metabolismo , Núcleo Pulposo , Ligante RANK/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Microambiente Celular/fisiologia , AMP Cíclico/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Osteoprotegerina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
17.
J Aquat Anim Health ; 25(3): 197-204, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23915177

RESUMO

In April 2011, 40% mortality of Largemouth Bass Micropterus salmoides juveniles occurred at a farm of Zhongshan City, Guangdong Province, China. Infected fish became lethargic, exhibited corkscrew and irregular swimming, and developed a distended abdomen and crooked body. Fish began to die within 2 d after the appearance of clinical signs. In order to analyze the pathogeny and diagnose the disease earlier, observation of clinical signs, cell infection, titer calculation, electron microscopy, immersion infection assay for fish, and nucleotide sequence analysis were carried out. Fathead minnow (FHM) cell cultures, inoculated with filtrate of liver and spleen homogenates from the diseased fish, developed the obvious cytopathic effect 46 h after inoculation in the primary culture and 24 h at the first passage. Typical rhabdovirus particles, 115-143 nm in length and 62-78 nm in diameter, were observed in infected FHM cells by direct transmission electron microscopy. The isolated virus produced a titer of 10(7.15) TCID50/mL. Immersion-Fish infected with the virus had similar clinical signs and 80% mortality with 10(2.5) LD50/mL. The data indicated that the rhabdovirus was the lethal pathogeny of the current disease. Based on nucleoprotein-gene nucleotide sequence multiple alignment analysis, the newly isolated virus is a strain of Siniperca chuatsi rhabdovirus (SCRV) under family Rhabdoviridae, which was initially isolated from Mandarin Fish Siniperca chuatsi. Up to the present, at least four virus strains have been isolated from diseased Largemouth Bass, which have had different clinical signs. Comparison of the clinical signs can help in an early diagnosis of the disease.


Assuntos
Bass , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/classificação , Animais , Aquicultura , China/epidemiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/mortalidade , Filogenia , Reação em Cadeia da Polimerase/veterinária , Rhabdoviridae/genética , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/mortalidade , Infecções por Rhabdoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA