Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circulation ; 116(25): 2913-22, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18056530

RESUMO

BACKGROUND: Female sex is an independent risk factor for torsade de pointes in long-QT syndrome. In women, QT interval and torsade de pointes risk fluctuate dynamically during the menstrual cycle and pregnancy. Accumulating clinical evidence suggests a role for progesterone; however, the effect of progesterone on cardiac repolarization remains undetermined. METHODS AND RESULTS: We investigated the effects of progesterone on action potential duration and membrane currents in isolated guinea pig ventricular myocytes. Progesterone rapidly shortened action potential duration, which was attributable mainly to enhancement of the slow delayed rectifier K+ current (I(Ks)) under basal conditions and inhibition of L-type Ca2+ currents (I(Ca,L)) under cAMP-stimulated conditions. The effects of progesterone were mediated by nitric oxide released via nongenomic activation of endothelial nitric oxide synthase; this signal transduction likely takes place in the caveolae because sucrose density gradient fractionation experiments showed colocalization of the progesterone receptor c-Src, phosphoinositide 3-kinase, Akt, and endothelial nitric oxide synthase with KCNQ1, KCNE1, and Ca(V)1.2 in the caveolae fraction. We used computational single-cell and coupled-tissue action potential models incorporating the effects of progesterone on I(Ks) and I(Ca,L); the model reproduces the fluctuations of cardiac repolarization during the menstrual cycle observed in women and predicts the protective effects of progesterone against rhythm disturbances in congenital and drug-induced long-QT syndrome. CONCLUSIONS: Our data show that progesterone modulates cardiac repolarization by nitric oxide produced via a nongenomic pathway. A combination of experimental and computational analyses of progesterone effects provides a framework to understand complex fluctuations of QT interval and torsade de pointes risks in various hormonal states in women.


Assuntos
Potenciais de Ação/fisiologia , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/fisiologia , Progesterona/fisiologia , Torsades de Pointes/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Biologia Computacional , AMP Cíclico/metabolismo , Feminino , Cobaias , Técnicas In Vitro , Síndrome do QT Longo/metabolismo , Modelos Cardiovasculares , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Progesterona/farmacologia , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Torsades de Pointes/metabolismo
2.
J Electrocardiol ; 40(6 Suppl): S47-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17993328

RESUMO

In the past two decades, mutations in cardiac ion channels have been shown to underlie a number of rare inherited cardiac arrhythmias. Defects in cardiac Na(+) channels can disrupt channel gating and cause electrical abnormalities that increase susceptibility to cardiac arrhythmia. Dozens of mutations have been identified in the gene SCN5A, which encodes the alpha subunit of the cardiac Na(+) channel, and have been causally linked to a wide spectrum of cardiac arrhythmic disorders. An important step in understanding genetically based arrhythmias is to clarify the relationship between molecular defects and the disruption of the delicate balance of dynamic interactions at the cell, tissue, and organ levels. Here, we provide an overview of cardiac Na(+) channel mutations that are associated with inherited arrhythmia syndromes. We also address pros and cons of current methodologies used to understand how specific genetic defects disrupt channel-gating kinetics and underlie cardiac arrhythmia. Finally, we discuss effects of mutations on predictability and efficacy of treatment with Na(+) channel-blocking drugs.


Assuntos
Potenciais de Ação/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , DNA/genética , Eletroencefalografia/métodos , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Animais , Simulação por Computador , Predisposição Genética para Doença/genética , Humanos , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Potenciais da Membrana/genética , Modelos Genéticos , Mutação
3.
Am J Physiol Heart Circ Physiol ; 293(6): H3480-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17933974

RESUMO

A number of mutations have been linked to diseases for which the underlying mechanisms are poorly understood. An example is Timothy Syndrome (TS), a multisystem disorder that includes severe cardiac arrhythmias. Here we employ theoretical simulations to examine the effects of a TS mutation in the L-type Ca(2+) channel on cardiac dynamics over multiple scales, from a gene mutation to protein, cell, tissue, and finally the ECG, to connect a defective Ca(2+) channel to arrhythmia susceptibility. Our results indicate that 1) the TS mutation disrupts the rate-dependent dynamics in a single cardiac cell and promotes the development of alternans; 2) in coupled tissue, concordant alternans is observed at slower heart rates in mutant tissue than in normal tissue and, once initiated, rapidly degenerates into discordant alternans and conduction block; and 3) the ECG computed from mutant-simulated tissue exhibits prolonged QT intervals at physiological rates and with small increases in pacing rate, T-wave alternans, and alternating T-wave inversion. At the cellular level, enhanced Ca(2+) influx due to the TS mutation causes electrical instabilities. In tissue, the interplay between faulty Ca(2+) influx and steep action potential duration restitution causes arrhythmogenic discordant alternans. The prolongation of action potentials causes spatial dispersion of the Na(+) channel excitability, leading to inhomogeneous conduction velocity and large action potential spatial gradients. Our model simulations are consistent with the ECG patterns from TS patients, which suggest that the TS mutation is sufficient to cause the clinical phenotype and allows for the revelation of the complex interactions of currents underlying it.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/genética , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Mutação , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Simulação por Computador , Cães , Eletrocardiografia , Genótipo , Modelos Cardiovasculares , Fenótipo , Canais de Sódio/metabolismo , Fatores de Tempo
4.
Am J Physiol Heart Circ Physiol ; 292(1): H66-75, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16997895

RESUMO

Pharmacological management of cardiac arrhythmias has been a long and widely sought goal. One of the difficulties in treating arrhythmia stems, in part, from incomplete understanding of the mechanisms of drug block and how intrinsic properties of channel gating affect drug access, binding affinity, and unblock. In the last decade, a plethora of genetic information has revealed that genetics may play a critical role in determining arrhythmia susceptibility and in efficacy of pharmacological therapy. In this context, we present a theoretical approach for investigating effects of drug-channel interaction. We use as an example open-channel or inactivated-channel block by the local anesthetics mexiletine and lidocaine, respectively, of normal and DeltaKPQ mutant Na(+) channels associated with the long-QT syndrome type 3. Results show how kinetic properties of channel gating, which are affected by mutations, are important determinants of drug efficacy. Investigations of Na(+) channel blockade are conducted at multiple scales (single channel and macroscopic current) and, importantly, during the cardiac action potential (AP). Our findings suggest that channel mean open time is a primary determinant of open state blocker efficacy. Channels that remain in the open state longer, such as the DeltaKPQ mutant channels in the abnormal burst mode, are blocked preferentially by low mexiletine concentrations. AP simulations confirm that a low dose of mexiletine can remove early afterdepolarizations and restore normal repolarization without affecting the AP upstroke. The simulations also suggest that inactivation state block by lidocaine is less effective in restoring normal repolarization and adversely suppresses peak Na(+) current.


Assuntos
Antiarrítmicos/administração & dosagem , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Modelos Cardiovasculares , Canais de Sódio/genética , Canais de Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/farmacocinética , Simulação por Computador , Relação Dose-Resposta a Droga , Quimioterapia Assistida por Computador/métodos , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Mutação , Farmacogenética/métodos , Relação Estrutura-Atividade , Resultado do Tratamento
5.
Hum Mol Genet ; 15(19): 2888-902, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16923798

RESUMO

Beta-adrenergic receptor-mediated cAMP or protein kinase A (PKA)-dependent modulation of cardiac potassium currents controls ventricular action potential duration (APD) at faster heart rates. HERG (KCNH2) gene mutations are associated with congenital long-QT syndrome (LQT2) and affect IKr activity, a key determinant in ventricular repolarization. Physical activity or emotional stress often triggers lethal arrhythmias in LQT2 patients. Beta-adrenergic stimulation of HERG channel activity is amplified and prolonged in vitro by the adaptor protein 14-3-3epsilon. In LQT2 families, we identified three novel heterozygous HERG mutations (G965X, R1014PfsX39, V1038AfsX21) in the C-terminus that led to protein truncation and loss of a PKA phosphorylation site required for binding of 14-3-3epsilon. When expressed in CHO cells, the mutants produced functional HERG channels with normal kinetic properties. We now provide evidence that HERG channel regulation by 14-3-3epsilon is of physiological significance in humans. Upon co-expression with 14-3-3epsilon, mutant channels still bound 14-3-3epsilon but did not respond with a hyperpolarizing shift in voltage dependence as seen in wild-type channels. Co-expression experiments of wild-type and mutant channels revealed dominant-negative behavior of all three HERG mutations. Simulations of the effects of sympathetic stimulation of HERG channel activity on the whole-cell action potential suggested a role in rate-dependent control of APD and an impaired ability of mutant cardiac myocytes to respond to a triggered event or an ectopic beat. In summary, the attenuated functional effects of 14-3-3epsilon on C-terminally truncated HERG channels demonstrate the physiological importance of coupling beta-adrenergic stimulation and HERG channel activity.


Assuntos
Proteínas 14-3-3/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Canais de Potássio/metabolismo , Proteínas 14-3-3/genética , Animais , Células CHO , Cricetinae , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Modelos Cardiovasculares , Mutação , Miócitos Cardíacos/metabolismo , Linhagem , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA