Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Environ Res ; 246: 118136, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191039

RESUMO

Preventing soil nitrogen (N) losses driven by microbial nitrification and denitrification contributes to improving global environmental concerns caused by NO3--N leaching and N2O emission. Quorum sensing (QS) signals regulate nitrification and denitrification of N-cycling bacteria in pure culture and water treatment systems, and mediate the composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in activated sludge. However, whether disrupting QS could prevent soil N losses remains unclear. This study explored the feasibility of applying quorum sensing inhibitors (QSIs) as an innovative strategy to reduce N losses from agricultural soils. The two QSIs, penicillic acid and 4-iodo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-benzeneacetamide (4-iodo PHL), were more effective in reducing N losses than traditional inhibitors, including N-(n-butyl) thiophosphoric triamide and 3,4-dimethylpyrazole phosphate. After 36 days of aerobic incubation, penicillic acid and 4-iodo PHL inhibited nitrification by 39% and 68%, respectively. The inhibitory effects are attributed to the fact that 4-iodo PHL decreased the abundance of archaeal and bacterial amoA genes, as well as the relative abundance of Candidatus Nitrocosmicus (AOA), Candidatus Nitrososphaera (AOA), and Nitrospira (nitrite-oxidizing bacteria/comammox), while penicillic acid reduced archaeal amoA abundance and the relative abundance of Nitrosospira (AOB) and the microbes listed above. Penicillic acid also strongly inhibited denitrification (33%) and N2O emissions (61%) at the peak of N2O production (day 4 of anaerobic incubation) via decreasing nitrate reductase gene (narG) abundance and increasing N2O reductase gene (nosZ) abundance, respectively. Furthermore, the environmental risks of QSIs to microbial community structure and network stability, CO2 emissions, and soil animals were acceptable. Overall, QSIs have application potential in agriculture to reduce soil N losses and the associated effect on climate change. This study established a new method to mitigate N losses from the perspective of QS, and can serve as important basis of decreasing the environmental risks of agricultural non-point source pollution.


Assuntos
Betaproteobacteria , Solo , Animais , Solo/química , Nitrogênio , Amônia , Ácido Penicílico , Percepção de Quorum , Microbiologia do Solo , Bactérias/genética , Archaea , Oxirredução
2.
J Environ Manage ; 360: 121129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749128

RESUMO

Aboveground vegetation restoration shapes the soil microbial community structure and affects microbial resource acquisition. However, the changes in soil microbial resource limitation in subsoil during vegetation restoration are still unclear. In this study, the microbial community structure and resource limitation in an alpine meadow soil profile that had undergone natural restoration for short-term (4-year) and long-term (10-year) restoration in response to vegetation restoration were explored through high-throughput sequencing analysis and extracellular enzyme stoichiometry (EES). There was no significant difference in microbial composition and α diversity between short- and long-term restoration soils. Soil microorganisms in this alpine meadow were mainly limited by phosphorus. Carbon limitation of soil microorganisms was significantly decreased in each layer (0-15, 15-30, 30-45, 45-60, and 60-80 cm corresponding to L1, L2, L3, L4, and L5, respectively) of long-term restoration soils when compared to that of the short-term restoration soil layers, while phosphorus limitation of microorganisms in subsoil (60-80 cm) was significantly increased by 17.38%. Soil nutrients, pH, moisture content, and microbial composition are the main drivers of microbial resource limitation in restoration, and their effects on microbial resource limitation were different in short- and long-term restoration. Meanwhile, key microbial taxa have a significant impact on microbial resource limitation, especially in short-term restoration soils. This study suggested that vegetation restoration significantly affected soil microbial resource limitation, and could alleviate microbial resource limitations by adding nutrients, thus accelerating the process of vegetation restoration in alpine ecosystems.


Assuntos
Pradaria , Microbiologia do Solo , Solo , Solo/química , Fósforo/análise , Microbiota , Carbono/metabolismo
3.
Environ Sci Technol ; 57(44): 16884-16894, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37857299

RESUMO

Dissolved organic matter (DOM) is critical for soil carbon sequestration in terrestrial ecosystems. DOM molecular composition varies with soil depth. However, the spatial heterogeneity of depth-dependent DOM in response to climate warming remains unclear, especially in alpine ecosystems. In this study, the DOM of alpine meadow soil samples was characterized comprehensively by using spectroscopy and mass spectrometry, and open-top chambers (OTCs) were employed to simulate warming. It was found that climate warming had the greatest impact on the upper layer (0-30 cm), followed by the lower layer (60-80 cm), while the middle layer (30-60 cm) was the most stable among the three soil layers. The reasons for the obvious changes in DOM in the upper and lower layers of soil were further explained based on biotic and abiotic factors. Specifically, soil nutrients (NH4+-N, NO3--N, TC, and TP) affected the molecular composition of DOM in layer L1 (0-15 cm), while pH affected layer L5 (60-80 cm). Gemmatimonadetes, Proteobacteria, and Actinobacteria played important roles in the composition of DOM in the L5 layer (60-80 cm), while the dominant fungal groups affecting the DOM composition increased in the L1 layer (0-15 cm) under warming. In summary, this research has contributed to a deeper understanding of depth-dependent changes in DOM molecular composition in alpine ecosystems.


Assuntos
Ecossistema , Solo , Solo/química , Tibet , Matéria Orgânica Dissolvida , Clima , Bactérias , Carbono
4.
Environ Res ; 202: 111672, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34265351

RESUMO

Ammonia volatilization from the farmland caused by the application of synthetic nitrogen fertilizer is the most important source of anthropogenic ammonia emissions. Biofertilizer application has been considered as an alternative option for agriculture sustainability and soil improvement. In this study, field trials were carried out to investigate the efficiency of Bacillus amyloliquefaciens (BA) biofertilizer on alleviating ammonia volatilization in alkaline farmland soil and increasing crop yield and nitrogen utilization. Potential response mechanisms were investigated from soil enzyme, nitrogen cycle function genes and microbial community levels. Compared with conventional fertilization, BA biofertilizer application reduced the ammonia volatilization by 68%, increased the crop yield and nitrogen recovery by 19% and 19%, respectively. Soil enzyme activity analysis showed that BA biofertilizer inhibited the urease activity and enhanced the potential ammonia oxidation (PAO). In addition, BA biofertilizer application also increased the bacterial amoA gene abundance, while decreased the ureC gene abundance. BA biofertilizer also significantly altered the community structure and composition, and especially raised the abundance of ammonia oxidation bacteria (AOB), while no changes were observed in abundance of nitrite oxidation bacteria (NOB). Briefly, BA biofertilizer was approved to reduce the transformation of fertilizer nitrogen to NH4+-N, simultaneously accelerating NH4+-N into the nitrification process, thus decreasing the NH4+-N content remained in alkaline soil and consequently alleviating the ammonia volatilization. Thus, these results suggested that the application of BA biofertilizer is a feasible strategy to improve crop yields and reduce agricultural ammonia emissions.


Assuntos
Bacillus amyloliquefaciens , Solo , Agricultura , Amônia/análise , Fazendas , Fertilizantes/análise , Nitrogênio/análise , Microbiologia do Solo , Volatilização
5.
Glob Chang Biol ; 26(2): 697-708, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782204

RESUMO

Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.


Assuntos
Gases de Efeito Estufa , Microbiota , Aquecimento Global , Camada de Gelo , Solo
6.
Can J Microbiol ; 66(11): 653-663, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32511936

RESUMO

The dependence of plant health and crop quality on the epiphytic microbial community has been extensively addressed, but little is known about plant-associated microbial communities under natural conditions. In this study, the bacterial and fungal communities on grape leaves were analyzed by 16S rRNA gene and internal transcribed spacer high-throughput sequencing, respectively. The results showed differences in the composition of the microbial communities on leaf samples of nine wine grape varieties. The most abundant bacterial genus was Pseudomonas, and the top three varieties with Pseudomonas were Zinfandel (22.6%), Syrah (21.6%), and Merlot (13.5%). The most abundant fungal genus was Alternaria, and the cultivar with the lowest abundance of Alternaria was Zinfandel (33.6%), indicating that these communities had different habitat preferences. The linear discriminant analysis effect size of all species showed that the bacteria Enterococcus, Massilia, and Kocuria were significantly enriched on the leaves of Merlot, Syrah, Cabernet Sauvignon, respectively; Pseudomonadales and Pantoea on Zinfandel; and Bacillus, Turicibacter, and Romboutsia on Pinot Noir. Similarly, the fungi Cladosporium, Phoma, and Sporormiella were significantly enriched on Zinfandel, Lon, and Gem, respectively. Both Bray-Curtis and unweighted UniFrac revealed that bacteria and fungi have a significant impact (P < 0.01), and the results further proved that variety is the most important factor affecting the microbial community. The findings indicate that some beneficial or harmful microorganisms existing on the wine grape leaves might affect the health of the grape plants and the wine-making process.


Assuntos
Microbiota , Vitis/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Especificidade de Hospedeiro , Folhas de Planta/genética , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Vitis/genética , Vinho/classificação , Vinho/microbiologia
7.
Can J Microbiol ; 66(3): 214-227, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32011910

RESUMO

Increasing the use of nitrogen fertilizers in tea orchards has led to intense nitrous oxide (N2O) emissions. Foliar application of Paenibacillus polymyxa biofertilizer has been proven to be beneficial for organic tea production. In this study, tea yield and quality were significantly improved after application of P. polymyxa biofertilizer compared with the control but were not significantly different from chemical fertilizer treatments. However, the average N2O fluxes in tea fields treated with chemical fertilizers and biofertilizers (225 kg N·ha-1·year-1 for both) were 50.6-973.7 and 0.6-29.1 times higher than those in the control treatment, respectively. Pot experiments conducted to explore the mechanism of N2O reduction induced by P. polymyxa biofertilizer showed that applying P. polymyxa in addition to urea could reduce N2O fluxes by 36.5%-73.1%. Quantitative PCR analysis suggested that a significant increase in the quantity of nirK and nosZ genes was linked to the reduction of N2O, and high-throughput sequencing of nosZ revealed active and potentially efficient denitrifiers in different treatments. Our findings suggest that P. polymyxa biofertilizer is in line with the requirements of modern agriculture, which aims to increase product yield and quality while reducing negative environmental impacts.


Assuntos
Inoculantes Agrícolas/metabolismo , Camellia sinensis/microbiologia , Fertilizantes/análise , Óxido Nitroso/metabolismo , Paenibacillus polymyxa/metabolismo , Microbiologia do Solo , Agricultura , Camellia sinensis/crescimento & desenvolvimento , Desnitrificação , Óxido Nitroso/análise , Solo/química , Ureia/metabolismo
8.
J Environ Sci (China) ; 89: 277-286, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31892399

RESUMO

As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs.


Assuntos
Compostagem/métodos , Resistência Microbiana a Medicamentos/genética , Genes Arqueais , Animais , Antibacterianos , Archaea , Genes Bacterianos , Esterco , Vácuo
9.
Can J Microbiol ; 65(2): 116-125, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30265845

RESUMO

Transgenic Bt cotton is widely cultivated, yet its impact on the phyllosphere mycobiome is poorly understood. Hence, the objective of this study was to investigate the effects resulting from the planting of Bt cotton on fungal diversity composition. The α diversity for the Bt cotton line SGK321 was lower than that of control plants at the budding stage and the blossoming and boll-forming stage, while an obvious increase in diversity for Bt cotton XP188 was observed at the same stage. The Cry1Ac levels were higher at the seedling stage than at the budding stage and the blossoming and boll-forming stage. There was no direct relationship between the expression of the Bt protein and variation in the fungal community for Bt cotton. However, PCoA and PCA results indicated that community structure differed among developmental stages. These results indicated that developmental stage rather than Cry1Ac expression was the key factor shaping the phyllosphere mycobiome in transgenic cotton.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Micobioma , Plantas Geneticamente Modificadas/metabolismo , Toxinas de Bacillus thuringiensis , Gossypium/crescimento & desenvolvimento , Gossypium/microbiologia
10.
Can J Microbiol ; 65(9): 642-652, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31241350

RESUMO

The phyllosphere, which supports a large number of microorganisms, represents the interface between the aboveground parts of plants and air. In this study, four nifH clone libraries were constructed from the phyllosphere of Pyrus serotina (L), Vitis vinifera (P), Prunus armeniaca (X), and Prunus avium (Y). Clones related to Skermanella (L, 12.1%; X, 15.6%; Y, 62.5%; P 70.8%), Bradyrhizobium (X, 2.1%; P, 15.1%; L, 63.7%), Erwinia (X, 68.8%), Pseudomonas (L, 3.3%; P, 7.6%), and Chroococcidiopsis (P, 0.9%; L, 4.4%, X; 5.2%, Y; 19.6%) were present at high percentages, highlighting their critical role in contributing nitrogen to the phyllosphere ecosystem. The 16S rDNA sequence analysis suggested that phyllosphere-associated bacteria were affiliated with a wide range of taxa, encompassing members from Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Tenericutes, and Deinococcus-Thermus. Additionally, the abundance of the nifH gene and 16S rDNA was assessed with quantitative PCR. The number of copies of nifH and 16S rDNA ranged from 1.14 × 103 to 1.49 × 104 and from 3.72 × 106 to 7.02 × 107 copies/g fresh leaf sample, respectively. In conclusion, our work sheds light on the microbial communities of the phyllosphere that are important for plant growth. Moreover, we observed a unique composition of nitrogen-fixing bacteria in each phyllosphere sample, suggesting the existence of specific interactions between these functional microorganism and plants, which may provide information or be a reference for the development of bacterial fertilizers.


Assuntos
Bactérias/genética , Variação Genética , Microbiota/genética , Prunus armeniaca/microbiologia , Prunus avium/microbiologia , Pyrus/microbiologia , Vitis/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
11.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934901

RESUMO

Massively input and accumulated ammonium is one of the main causes of eutrophication in aquatic ecosystems, which severely deteriorates water quality. Previous studies showed that one of the commonly used macrophytes, Myriophyllum aquaticum, was capable of not only withstanding ammonium of high concentration, but also efficiently assimilating extracellular ammonium to constitutive amino acids and proteins. However, the genetic mechanism regulating such efficient nitrogen metabolism in M. aquaticum is still poorly understood. Therefore, RNA-based analysis was performed in this study to understand the ammonium regulatory mechanism in M. aquaticum in response to various concentrations of ammonium. A total of 7721 genes were differentially expressed, of which those related to nitrogen-transport, assimilation, and remobilization were highly-regulated in response to various concentrations of ammonium. We have also identified transcription factors and protein kinases that were rapidly induced in response to ammonium, which suggests their involvement in ammonium-mediated signalling. Meanwhile, secondary metabolism including phenolics and anthocyanins biosynthesis was also activated in response to various concentrations of ammonium, especially at high ammonium concentrations. These results proposed a complex physiological and genetic regulation network related to nitrogen, carbohydrate, transcription factors, and secondary metabolism for nitrogen use efficiency in M. aquaticum.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Nitrogênio/metabolismo , Saxifragales/genética , Análise de Sequência de RNA , Transcriptoma/genética , Aminoácidos/análise , Compostos de Amônio/farmacologia , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Família Multigênica , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
12.
J Environ Manage ; 246: 157-163, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176180

RESUMO

The radial oxygen loss (ROL) of wetland plants is a crucial factor that can influence the efficiency required for nitrogen (N) removal and microbial activities responsible for N removal in constructed wetlands (CWs). However, the shift of microbial community in different niches in response to ROL has been rarely studied. This study aims to unravel the link between the ROL and microbial response in sediment, water and rhizoplane by a surface flow CW planted with Myriophyllum aquaticum for treating high-strength swine wastewater. Ti3+-citrate colorimetric method demonstrated that M. aquaticum was a wetland species with a ROL of 0.019 mg/h/plant. Using quantitative polymerase chain reactions (qPCR) and high-throughput sequencing of microbial 16S rRNA gene, we demonstrated that the abundance of facultative anaerobic denitrifiers in the rhizoplane was the most of the three niches, that in the water (5-10 cm) was the less and that in the sediment was the least. Acinetobacter was enriched and dominated amongst denitrifiers in the water. Denitrifiers in the rhizoplane were mainly dominated by enriched Pseudomonas, Aeromonas, and Acinetobacter. The theoretical calculation of oxygen sources and consumptions indicated that water reaeration should support the oxygen demands for nitrification in the aerobic layer (0-5 cm), and the ROL could stimulate the growth of facultative anaerobic denitrifiers in the rhizoplane and water (5-10 cm) to achieve denitrification within CW systems.


Assuntos
Oxigênio , Áreas Alagadas , Anaerobiose , Animais , Desnitrificação , Nitrogênio , RNA Ribossômico 16S , Suínos , Águas Residuárias
13.
J Environ Sci (China) ; 78: 53-62, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665656

RESUMO

Quorum sensing (QS) regulation of the composition of ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) communities and functions in wastewater treatment was investigated. Specifically, we explored the role of N-acyl-l-homoserine lactones (AHLs) in microbial community dynamics in activated sludge. On average, the specific ammonia-oxidising-rate increased from 1.6 to 2.8 mg NH4+-N/g MLSS/hr after treatment with long-chain AHLs for 16 days, and the addition of AHLs to sludge resulted in an increased number of AOA/AOB amoA genes. Significant differences were observed in the AOA communities of control and AHL-treated cultures, but not the AOB community. Furthermore, the dominant functional AOA strains of the Crenarchaeota altered their ecological niche in response to AHL addition. These results provide evidence that AHLs play an important role in mediating AOA/AOB microbial community parameters and demonstrate the potential for application of QS to the regulation of nitrogen compound metabolism in wastewater treatment.


Assuntos
Acil-Butirolactonas/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Águas Residuárias/microbiologia , Acil-Butirolactonas/análise , Amônia/metabolismo , Archaea/genética , Bactérias/genética , Betaproteobacteria , Microbiota , Nitrificação , Oxirredução , Oxirredutases , Esgotos/microbiologia , Eliminação de Resíduos Líquidos
14.
Environ Microbiol ; 20(7): 2370-2385, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29624877

RESUMO

Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Elétrons , Metano/metabolismo , Microbiota , Microbiologia do Solo , Anaerobiose , Archaea/genética , Bactérias/genética , Biodiversidade , China , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Fenômenos Geológicos , Oxirredução , RNA Ribossômico 16S/genética
15.
Archaea ; 2018: 6201541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532656

RESUMO

Recently, a new oxygenic pathway has been proposed based on the disproportionation of NO with putative NO dismutase (Nod). In addition to a new process in nitrogen cycling, this process provides ecological advantages for the degradation of substrates in anaerobic conditions, which is of great significance for wastewater treatment. However, the Nod distribution in aquatic environments is rarely investigated. In this study, we obtained the nod genes with an abundance of 2.38 ± 0.96 × 105 copies per gram of dry soil from the Zoige wetland and aligned the molecular characteristics in the corresponding Nod sequences. These Nod sequences were not only found existing in NC10 bacteria, but were also found forming some other clusters with Nod sequences from a WWTP reactor or contaminated aquifers. Moreover, a new subcluster in the aquifer-similar cluster was even dominant in the Zoige wetland and was named the Z-aquifer subcluster. Additionally, soils from the Zoige wetland showed a high potential rate (10.97 ± 1.42 nmol of CO2 per gram of dry soil per day) for nitrite-dependent anaerobic methane oxidation (N-DAMO) with low abundance of NC10 bacteria, which may suggest a potential activity of Nod in other clusters when considering the dominance of the Z-aquifer subcluster Nod. In conclusion, we verified the occurrence of Nod in an alpine wetland for the first time and found a new subcluster to be dominant in the Zoige wetland. Moreover, this new subcluster of Nod may even be active in the N-DAMO process in this alpine wetland, which needs further study to confirm.


Assuntos
Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/metabolismo , Microbiologia Ambiental , Metano/metabolismo , Óxido Nítrico/metabolismo , Áreas Alagadas , Anaerobiose , Metagenoma , Análise de Sequência de DNA
16.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29776923

RESUMO

Paracoccus denitrificans is a valuable model organism due to its versatile respiration capability and bioenergetic flexibility, both of which are critical to its survival in different environments. Quorum sensing (QS) plays a crucial role in the regulation of many cell functions; however, whether QS systems play a role in P. denitrificans is unknown. In this study, we demonstrated that iron uptake systems in P. denitrificans were directly regulated by a newly identified QS system. Genes coding for TonB-dependent systems, which transport chelated iron, were transcribed at higher levels in the QS-defective mutants. In contrast, genes coding for the Fbp system, which is TonB independent and transports unchelated ferric iron, were downregulated in the mutants. In brief, QS in P. denitrificans triggers a switch in iron uptake from TonB-dependent to TonB-independent transport during biofilm formation as higher concentrations of iron accumulate in the exopolysaccharide (EPS). Switching from TonB-dependent iron uptake systems to TonB-independent systems not only prevents cells from absorbing excess iron but also conserves energy. Our data suggest that iron uptake strategies are directly regulated by QS in Paracoccus denitrificans to support their survival in available ecological niches.IMPORTANCE As iron is an important trace metal for most organisms, its absorption is highly regulated. Fur has been reported as a prevalent regulator of iron acquisition. In addition, there is a relationship between QS and iron acquisition in pathogenic microbes. However, there have been few studies on the iron uptake strategies of nonpathogenic bacteria. In this study, we demonstrated that iron uptake systems in Paracoccus denitrificans PD1222 were regulated by a newly identified PdeR/PdeI QS system during biofilm formation, and we put forward a hypothesis that QS-dependent iron uptake systems benefit the stability of biofilms. This report elaborates the correlation among QS, iron uptake, and biofilm formation and thus contributes to an understanding of the ecological behavior of environmental bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Transporte Biológico , Ferro/metabolismo , Paracoccus denitrificans/metabolismo , Percepção de Quorum/fisiologia , Adaptação Biológica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Paracoccus denitrificans/crescimento & desenvolvimento
17.
Glob Chang Biol ; 24(6): 2352-2365, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29251817

RESUMO

Nitrous oxide (N2 O) is a long-lived greenhouse gas that can result in the alteration of atmospheric chemistry and cause accompanying changes in global climate. To date, many techniques have been used to mitigate the emissions of N2 O from agricultural fields, which represent one of the most important sources of N2 O. In this study, we designed a greenhouse pot experiment and a microcosmic serum bottle incubation experiment using acidic soil from a vegetable farm to study the effects of Bacillus amyloliquefaciens (BA) on plant growth and N2 O emission rates. The addition of BA to the soil promoted plant growth enhanced the soil pH and increased the total nitrogen (TN) contents in the plants. At the same time, it decreased the concentrations of ammonium (NH4+ ), nitrate (NO3- ) and TN in the soil. Overall, the addition of BA resulted in a 50% net reduction of N2 O emissions compared with the control. Based on quantitative PCR and the network analysis of DNA sequencing, it was demonstrated that BA partially inhibited the nitrification process through the significant reduction of ammonia oxidizing bacteria. Meanwhile, it enhanced the denitrification process, mainly by increasing the abundance of N2 O-reducing bacteria in the treatment with BA. The results of our microcosm experiment provided evidence that strongly supported the above findings under more strictly controlled laboratory conditions. Taken together, the results of our study evidently demonstrated that BA has dual effects on the promotion of plant growth and the dramatic reduction of greenhouse emissions, thus suggesting the possibility of screening beneficial microbial organisms from the environment that can promote plant growth and mitigate greenhouse trace gases.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Óxido Nitroso/química , Microbiologia do Solo , Solo/química , Desnitrificação , Nitratos/análise , Nitrificação , Nitrogênio/análise , Ciclo do Nitrogênio , Óxido Nitroso/metabolismo
18.
Environ Sci Technol ; 52(19): 11338-11345, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199630

RESUMO

Nitrous oxide (N2O) contributes up to 8% of global greenhouse gas emissions, with approximately 70% from terrestrial sources; over one-third of this terrestrial emission has been linked to increased agricultural fertilizer use. Much of the nitrogen in fertilizers is converted to N2O by microbial processes in soil. However, the potential mechanism of biofertilizers and the role of microbial communities in mitigating soil N2O emissions are not fully understood. Here, we used a greenhouse-based pot experiment with tea plantation soil to investigate the effect of Trichoderma viride biofertilizer on N2O emission. The addition of biofertilizer reduced N2O emissions from fertilized soil by 67.6%. Quantitative PCR (qPCR) analysis of key functional genes involved in N2O generation and reduction ( amoA, nirK, nirS, and nosZ) showed an increased abundance of nirS and nosZ genes linked to the pronounced reduction in N2O emissions. High-throughput sequencing of nosZ showed enhanced relative abundance of nosZ-harboring denitrifiers in the T. viride biofertilizer treatments, thus linking greater N2O reduction capacity to the reduced emissions. Our findings showed that biofertilizers can affect the microbial nitrogen transformation process and reduce N2O emissions from agroecosystems.


Assuntos
Microbiota , Solo , Óxido Nitroso , Microbiologia do Solo , Chá
19.
J Environ Sci (China) ; 66: 199-207, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628087

RESUMO

Ammonia (NH3) volatilization is one of the primary pathways of nitrogen (N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin (pH8.37-8.43) to evaluate the suppression effect of Trichoderma viride (T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer (T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer ((CK), urea), while nonviable T. viride biofertilizer (TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater (SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea (AOA) and ammonium-oxidizing bacteria (AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Amônia/análise , Fertilizantes , Trichoderma , China , Nitrificação , Solo/química , Microbiologia do Solo , Volatilização
20.
Ecotoxicol Environ Saf ; 143: 159-165, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28535441

RESUMO

Chinese lizards (Eremias argus) were exposed to separated R-(-)-triadimefon, S-(+)-triadimefon and racemic triadimefon to evaluate enantioselective accumulation of triadimefon. After single oral administration of R-(-)-triadimefon, S-(+)-triadimefon and racemic triadimefon, the time-concentration curves in different tissues were found to be different. Triadimefon enantiomers crossed the blood-brain barrier and brain is a main target organ. The residues of triadimefon enantiomers in fat were highest after 24h indicating that fat was the main tissue of accumulation. In racemic triadimefon exposure group, the enantiomer fractions of R-(-)-triadimefon in different tissues showed that the differences between R-(-)-triadimefon and S-(+)-triadimefon were significant in absorption and metabolism, but the differences became smaller in exclusion and accumulation. From the results of mathematical models, S-(+)-triadimefon was absorbed and eliminated faster than R-(-)-triadimefon, and R-(-)-triadimefon was easily distributed in the tissues and more easily converted into its metabolites. Furthermore, among the four enantiomers of triadimenol, SR-(-)-triadimenol produced by S-(+)-triadimefon may have the highest fungicidal activity and the strongest biological toxicity, RR-(+)-triadimenol produced by R-(-)-triadimefon was most likely to bioaccumulate in lizard. Identifying toxicological effects and dose-response relationship of SR-(-)-triadimenol and RR-(+)-triadimenol will help fully assess the risk of TF enantiomers use in the future. The results enrich and supplement the knowledge of the environmental fate of triadimefon enantiomers.


Assuntos
Fungicidas Industriais/farmacocinética , Lagartos/metabolismo , Triazóis/farmacocinética , Tecido Adiposo/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Fungicidas Industriais/química , Masculino , Modelos Biológicos , Estereoisomerismo , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA