Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196033

RESUMO

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteólise , Replicação Viral , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
2.
J Med Virol ; 96(2): e29411, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285434

RESUMO

Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2'-O-ribose methyltransferases (N7-MTase and 2'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/genética , SARS-CoV-2/genética , Metilação de RNA , Capuzes de RNA
3.
J Am Chem Soc ; 145(46): 25440-25449, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955678

RESUMO

Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.

4.
J Med Virol ; 95(6): e28832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264691

RESUMO

The protein activator of protein kinase R (PKR) (PACT) has been shown to play a crucial role in stimulating the host antiviral response through the activation of PKR, retinoic acid-inducible gene I, and melanoma differentiation-associated protein 5. Whether PACT can inhibit viral replication independent of known mechanisms is still unrevealed. In this study, we show that, like many viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks GSK-3ß to facilitate its replication. GSK-3ß-induced phosphorylation on N protein increased the interaction between N protein and nsp3. Thus, GSK-3ß-N-nsp3 cascade promotes viral replication. Although SARS-CoV-2 can sabotage the activation of AKT, the upstream proteins suppressing the activation of GSK-3ß, we found that the host can use PACT, another protein kinase, instead of AKT to decrease the activity of GSK-3ß and the interaction between PACT and GSK-3ß is enhanced upon viral infection. Moreover, PACT inhibited the activity of GSK-3ß independent of its well-studied double-stranded RNA binding and PKR activating ability. In summary, this study identified an unknown function of PACT in inhibiting SARS-CoV-2 replication through the blockage of GSK-3ß-N-nsp3 cascade.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , SARS-CoV-2/metabolismo , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação
5.
J Am Chem Soc ; 143(39): 16226-16234, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34553913

RESUMO

Understanding the chemical behavior of actinide elements is essential for the effective management and use of actinide materials. In this study, we report an unprecedented η2 (side-on) coordination of U by a cyanide in a UCN cluster, which was stabilized inside a C82 fullerene cage. UCN@Cs(6)-C82 was successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray crystallography, cyclic voltammetry, spectroscopy, and theoretical calculations. The bonding analysis demonstrates significant donation bonding between CN- and uranium, and covalent interactions between uranium and the carbon cage. These effects correlate with an observed elongated cyanide C-N bond, resulting in a rare case where the oxidation state of uranium shows ambiguity between U(III) and U(I). The discovery of this unprecedented triangular configuration of the uranium cyanide cluster provides a new insight in coordination chemistry and highlights the large variety of bonding situations that uranium can have.

6.
Inorg Chem ; 60(15): 11496-11502, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34278797

RESUMO

Actinide endohedral fullerenes have demonstrated remarkably different physicochemical properties compared to their lanthanide analogues. In this work, two novel isomers of Th@C82 were successfully synthesized, isolated, and fully characterized by mass spectrometry, X-ray single crystallography, UV-vis-NIR spectroscopy, Raman spectroscopy, and cyclic voltammetry. The molecular structures of the two isomers were determined unambiguously as Th@C2v(9)-C82 and Th@C2(5)-C82 by single-crystal X-ray diffraction analysis. Raman and UV-vis-NIR spectroscopies further confirm the assignment of the cage isomers. Electrochemical gaps suggest that both Th@C2v(9)-C82 and Th@C2(5)-C82 possess a stable closed-shell electronic structure. The computational results further confirm that Th@C2v(9)-C82 and Th@C2(5)-C82 exhibit a unique four-electron charge transfer from the metal to the carbon cage and are among the most abundant isomers of Th@C82.

7.
J Am Chem Soc ; 141(51): 20249-20260, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31793304

RESUMO

Novel actinide cluster fullerenes, U2C2@Ih(7)-C80 and U2C2@D3h(5)-C78, were synthesized and fully characterized by mass spectrometry, single-crystal X-ray crystallography, UV-vis-NIR, nuclear magnetic resonance spectroscopy (NMR), X-ray absorption spectroscopy (XAS), Raman spectroscopy, IR spectroscopy, as well as density functional and multireference wave function calculations. The encapsulated U2C2 is the first example of a uranium carbide cluster featuring two U centers bridged by a C≡C unit. The U-C bond distances in these U2C2 clusters are in the range between 2.130 and 2.421 Å. While the U2C2 cluster in U2C2@C80 adopts a butterfly-shaped geometry with a U-C2-U dihedral angle of 112.7° and a U-U distance of 3.855 Å, the U-U distance in U2C2@C78 is 4.164 Å and the resulting U-C2-U dihedral angle is increased to 149.1°. The combined experimental and quantum-chemical results suggest that the formal U oxidation state is +4 in the U2C2 cluster, and each U center transfers three electrons to the C2n cage and one electron to C2. Different from the strong U═C covalent bonding reported for U2C@C80, the U-C bonds in U2C2 are less covalent and predominantly ionic. The C-C triple bond is somewhat weaker than in HCCH, and the C-C π bonds undergo donation bonding with the U centers. This work demonstrates that the combination of the unique encapsulation effect of fullerene cages and the variable oxidation states of actinide elements can lead to the stabilization of novel actinide clusters, which are not accessible by conventional synthetic methods.

8.
Inorg Chem ; 58(24): 16722-16726, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31773950

RESUMO

For the first time, Th@Td(19151)-C76, a highly symmetric C76 cage encapsulating an actinide metal ion, has been synthesized and characterized by single-crystal X-ray crystallography, mass spectrometry, UV-vis-NIR spectroscopy, and cyclic voltammetry. The single-crystal crystallographic analysis unambiguously assigned the fullerene cage as Td(19151)-C76 and confirmed Th@Td(19151)-C76 as the first IPR (isolated-pentagon rule) C76-based monometallofullerene. The crystallographic results further revealed that the optimal Th site resides over a sumanene-type hexagon, similar to that of the Th@C1(11)-C86 but different from the previously reported Th@C3v(8)-C82. In addition, electrochemical study found that Th@Td(19151)-C76 processes an unusually low first oxidation potential (0.03 V), suggesting its strong electron donating ability.

9.
J Am Chem Soc ; 140(51): 18039-18050, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30453733

RESUMO

For the first time, actinide endohedral metallofullerenes (EMFs) with non-isolated-pentagon-rule (non-IPR) carbon cages, U@C80, Th@C80, and U@C76, have been successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray diffractometry, UV-vis-NIR and Raman spectroscopy, and cyclic voltammetry. Crystallographic analysis revealed that the U@C80 and Th@C80 share the same non-IPR cage of C1(28324)-C80, and U@C76 was assigned to non-IPR U@ C1(17418)-C76. All of these cages are chiral and have never been reported before. Further structural analyses show that enantiomers of C1(17418)-C76 and C1(28324)-C80 share a significant continuous portion of the cage and are topologically connected by only two C2 insertions. DFT calculations show that the stabilization of these unique non-IPR fullerenes originates from a four-electron transfer, a significant degree of covalency, and the resulting strong host-guest interactions between the actinide ions and the fullerene cages. Moreover, because the actinide ion displays high mobility within the fullerene, both the symmetry of the carbon cage and the possibility of forming chiral fullerenes play important roles to determine the isomer abundances at temperatures of fullerene formation. This study provides what is probably one of the most complete examples in which carbon cage selection occurs through thermodynamic control at high temperatures, so the selected cages do not necessarily coincide with the most stable ones at room temperature. This work also demonstrated that the metal-cage interactions in actinide EMFs show remarkable differences from those previously known for lanthanide EMFs. These unique interactions not only could stabilize new carbon cage structures, but more importantly, they lead to a new family of metallofullerenes for which the cage selection pattern is different to that observed so far for nonactinide EMFs. For this new family, the simple ionic A q+@C2 n q- model makes predictions less reliable, and in general, unambiguously discerning the isolated structures requires the combination of accurate computational and experimental data.

11.
J Colloid Interface Sci ; 672: 805-813, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875836

RESUMO

Short-side-chain perfluorosulfonic acid (SSC-PFSA) ionomers with high ion-exchange-capacity are promising candidates for high-temperature proton exchange membranes (PEMs) and catalyst layer (CL) binders. The solution-casting method determines the importance of SSC-PFSA dispersion characteristics in shaping the morphology of PEMs and CLs. Therefore, a thorough understanding of the chain behavior of SSC-PFSA in dispersions is essential for fabricating high-quality PEMs and CLs. In this study, we have employed multiple characterization techniques, including dynamic light scatting (DLS), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscope (Cryo-TEM), to fully study the chain aggregation behaviors of SSC-PFSA in water-ethanol solvents and elucidate the concentration-dependent self-assembly process. In dilute dispersions (2 mg/mL), SSC-PFSA assembles into mono-disperse rod-like aggregates, featuring a twisted fluorocarbon backbone that forms a hydrophobic stem, and the sulfonic acid side chains extending outward to suit the hydrophilic environment. As the concentration increases, the radius of rod particles increases from 1.47 to 1.81 nm, and the mono-disperse rod particles first form a "end-to-end" configuration that doubles length (10 mg/mL), and then transform into a swollen network structure in semi-dilute dispersion (20 mg/mL). This work provides a well-established structure model for SSC-PFSA dispersions, which is the key nanostructure to be inherited by PEMs.

12.
Front Neurol ; 14: 1276663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249732

RESUMO

Background: Epidemiological studies have demonstrated a comorbid association between migraine and epilepsy. However, despite the long history of this association, the exact nature of the relationship between migraine and epilepsy remains largely unresolved. Therefore, it is crucial to conduct a meta-analysis in order to thoroughly investigate the relationship between migraine and epilepsy. Methods: Odds ratios (ORs) or relative risks (RRs) and 95% confidence intervals (CIs) regarding association between migraine and epilepsy were summarized using STATA 12.0 software. Results: There was an 80% increase in the lifetime prevalence of migraine among patients with epilepsy, compared to those without epilepsy with a random effects model (OR/RR: 1.80, 95% CI: 1.35 to 2.40, I2 = 97.5%, p < 0.001). There was an 80% increase in the lifetime prevalence of epilepsy among patients with migraine, compared to those without migraine with a random effects model (OR/RR: 1.80, 95% CI: 1.43 to 2.25, I2 = 80.6%, p < 0.001). Conclusions: It is important to note the comorbid association between migraine and epilepsy examined in the study.

13.
Sci Rep ; 13(1): 2029, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739449

RESUMO

Due to the numerous cross-operations and poor information communication, it is easy to cause production safety accidents in traditional assembled steel plants. The transformation and upgrading of smart production in the assembly steel plants is helpful to improve the efficiency of safety management. In order to effectively reduce the safety risks in the production of assembled steel components, this paper integrates policy incentives and safety supervision, constructs an evolutionary game model between the government and assembled steel producers, and analyzes the strategic evolution rules and stability conditions of stakeholders through the replication dynamics equation. Moreover, based on the empirical simulation of the Fuzhou X Steel Structure Plant project, the effectiveness of the evolutionary model incentive strategy setting is verified. The results show that whether an assembled steel plants adopt a smart management strategy or not is influenced by the government's incentive subsidy mechanism, penalty mechanism, the benefits and costs generated by traditional/ smart management, the probability and loss of safety accidents and other factors. The conclusion is important for upgrading the safety management mode, improving the safety production efficiency and constructing the safety supervision system of the assembled steel smart plant.

14.
Nat Commun ; 13(1): 7192, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418311

RESUMO

Actinide diatomic molecules are ideal models to study elusive actinide multiple bonds, but most of these diatomic molecules have so far only been studied in solid inert gas matrices. Herein, we report a charged U≡N diatomic species captured in fullerene cages and stabilized by the U-fullerene coordination interaction. Two diatomic clusterfullerenes, viz. UN@Cs(6)-C82 and UN@C2(5)-C82, were successfully synthesized and characterized. Crystallographic analysis reveals U-N bond lengths of 1.760(7) and 1.760(20) Å in UN@Cs(6)-C82 and UN@C2(5)-C82. Moreover, U≡N was found to be immobilized and coordinated to the fullerene cages at 100 K but it rotates inside the cage at 273 K. Quantum-chemical calculations show a (UN)2+@(C82)2- electronic structure with formal +5 oxidation state (f1) of U and unambiguously demonstrate the presence of a U≡N bond in the clusterfullerenes. This study constitutes an approach to stabilize fundamentally important actinide multiply bonded species.

15.
Front Microbiol ; 13: 907422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722274

RESUMO

Understanding the process of replication and transcription of SARS-CoV-2 is essential for antiviral strategy development. The replicase polyprotein is indispensable for viral replication. However, whether all nsps derived from the replicase polyprotein of SARS-CoV-2 are indispensable is not fully understood. In this study, we utilized the SARS-CoV-2 replicon as the system to investigate the role of each nsp in viral replication. We found that except for nsp16, all the nsp deletions drastically impair the replication of the replicon, and nsp14 could recover the replication deficiency caused by its deletion in the viral replicon. Due to the unsuccessful expressions of nsp1, nsp3, and nsp16, we could not draw a conclusion about their in trans-rescue functions. Our study provided a new angle to understand the role of each nsp in viral replication and transcription, helping the evaluation of nsps as the target for antiviral drug development.

16.
Chem Commun (Camb) ; 57(54): 6624-6627, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34121104

RESUMO

A novel endohedral metallofullerene (mono-EMF), Th@D5h(6)-C80, has been successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray diffraction, UV-vis-NIR and Raman spectroscopy and cyclic voltammetry. Single crystal XRD analysis unambiguously assigned the fullerene cage as D5h(6)-C80, the first example in which the highly symmetric cage is stabilized by a single metal ion. The combined experimental and theoretical studies further reveal that the D5h(6)-C80 cage, known only for its stabilization by 6-electron transfer, is stabilized by the 4-electron transfer from the encapsulated Th ion for the first time.

17.
Chem Commun (Camb) ; 57(34): 4150-4153, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33908444

RESUMO

A novel cluster fullerene, Sc3N@Cs(39 663)-C82, has been synthesized and characterized. Crystallograpic charaterization unambiguously determines the non-IPR cage structure of Cs(39 663)-C82. Structural analyses further reveal that the Sc3N cluster is notably stretched to facilitate the interaction with the non-IPR fullerene cage.

18.
Nat Commun ; 12(1): 2372, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888719

RESUMO

The nature of the actinide-actinide bonds is of fundamental importance to understand the electronic structure of the 5f elements. It has attracted considerable theoretical attention, but little is known experimentally as the synthesis of these chemical bonds remains extremely challenging. Herein, we report a strong covalent Th-Th bond formed between two rarely accessible Th3+ ions, stabilized inside a fullerene cage nanocontainer as Th2@Ih(7)-C80. This compound is synthesized using the arc-discharge method and fully characterized using several techniques. The single-crystal X-Ray diffraction analysis determines that the two Th atoms are separated by 3.816 Å. Both experimental and quantum-chemical results show that the two Th atoms have formal charges of +3 and confirm the presence of a strong covalent Th-Th bond inside Ih(7)-C80. Moreover, density functional theory and ab initio multireference calculations suggest that the overlap between the 7s/6d hybrid thorium orbitals is so large that the bond still exists at Th-Th separations larger than 6 Å. This work demonstrates the authenticity of covalent actinide metal-metal bonds in a stable compound and deepens our fundamental understanding of f element metal bonds.

19.
Chem Commun (Camb) ; 56(27): 3867-3870, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134078

RESUMO

A mixed actinide-lanthanide cluster fullerene, Sc2UC@Ih(7)-C80, was isolated and fully characterized. For the first time, the single crystal X-ray crystallographic analysis confirms a novel actinide-lanthanide cluster Sc2UC stabilized inside an Ih(7)-C80 cage. Moreover, the U[double bond, length as m-dash]C double bond distance is 2.01 Å, the shortest U[double bond, length as m-dash]C bond confirmed by crystallography so far.

20.
Chem Sci ; 12(7): 2488-2497, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34164015

RESUMO

Chemical functionalization of endohedral metallofullerenes (EMFs) is essential for the application of these novel carbon materials. Actinide EMFs, a new EMF family member, have presented unique molecular and electronic structures but their chemical properties remain unexplored. Here, for the first time, we report the chemical functionalization of actinide EMFs, in which the photochemical reaction of Th@C 3v(8)-C82 and U@C 2v(9)-C82 with 2-adamantane-2,3'-[3H]-diazirine (AdN2, 1) was systematically investigated. The combined HPLC and MALDI-TOF analyses show that carbene addition by photochemical reaction afforded three isomers of Th@C 3v(8)-C82Ad and four isomers of U@C 2v(9)-C82Ad (Ad = adamantylidene), presenting notably higher reactivity than their lanthanide analogs. Among these novel EMF derivatives, Th@C 3v(8)-C82Ad(I, II, III) and U@C 2v(9)-C82Ad(I, II, III) were successfully isolated and were characterized by UV-vis-NIR spectroscopy. In particular, the molecular structures of first actinide fullerene derivatives, Th@C 3v(8)-C82Ad(I) and U@C 2v(9)-C82Ad(I), were unambiguously determined by single crystal X-ray crystallography, both of which show a [6,6]-open cage structure. In addition, isomerization of Th@C 3v(8)-C82Ad(II), Th@C 3v(8)-C82Ad(III), U@C 2v(9)-C82Ad(II) and U@C 2v(9)-C82Ad(III) was observed at room temperature. Computational studies suggest that the attached carbon atoms on the cages of both Th@C 3v(8)-C82Ad(I) and U@C 2v(9)-C82Ad(I) have the largest negative charges, thus facilitating the electrophilic attack. Furthermore, it reveals that, compared to their lanthanide analogs, Th@C 3v(8)-C82 and U@C 2v(9)-C82 have much closer metal-cage distance, increased metal-to-cage charge transfer, and strong metal-cage interactions stemming from the significant contribution of extended Th-5f and U-5f orbitals to the occupied molecular orbitals, all of which give rise to their unusual high reactivity. This study provides first insights into the exceptional chemical properties of actinide endohedral fullerenes, which pave ways for the future functionalization and application of these novel EMF compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA