Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Opt Express ; 29(23): 37234-37244, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808800

RESUMO

Mid-infrared absorption spectroscopy is an effective method for detecting analyte fingerprints without labeling, but the inherent loss of metals in current methods is a main issue. Here, a sensing scheme was proposed that uses an all-dielectric grating metasurface and angular scanning of polarized light, and then it was verified by numerical simulation. The proposed fingerprint detection scheme could effectively couple a guided-mode resonance spectrum peak with the characteristic peak of the analyte's phonon-polariton in the mid-infrared region, significantly enhancing the interaction between light and the analyte. The novel scheme would realize broadband enhancement to detect a variety of substances, and facilitate mid-infrared sensing and analysis of trace substances.

2.
Nanotechnology ; 30(3): 03LT01, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30418941

RESUMO

The synthesis of lateral heterostructures assembled by atomically-thin materials with distinct intrinsic properties is important for future heterojunction-embedded two-dimensional (2D) devices. Here we report an etching-assisted chemical vapor deposition method to synthesize large-area continuous lateral graphene/hexagonal boron nitride (Gr/h-BN) heterostructures on carbon-containing copper foils. The h-BN film is first synthesized on the copper foil, followed by hydrogen etching, and then epitaxial graphene domains are grown to form continuous lateral heterostructures. Analyses, including Raman spectroscopy, atomic force microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet-visible absorption spectroscopy, are used to characterize the coexistence of both materials and the highly continuous nature of this lateral heterostructure. This facile and scalable synthesizing method enables the potential usage of Gr/h-BN heterostructure in both fundamental studies and related 2D devices.

3.
Microb Pathog ; 112: 142-147, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28916320

RESUMO

J subgroup avian leukosis virus (ALV-J) is an exogenous retrovirus of avian. A key feature of ALV-J infection is leading to severe immunosuppressive characteristic of diseases. Viral components of retrovirus were reported closely associated with immunosuppression, and several similarities between exosomes and retrovirus preparations have lead to the hypotheses of retrovirus hijacker exosomes pathway. In this study, we purified exosomes from DF-1 cells infected and uninfected by ALV-J. Electron microscopy and mass spectrometry (MS) analysis showed that ALV-J not only increased the production of exosomes from ALV-J infected DF-1 cells (Exo-J) but also stimulated some proteins expression, especially ALV-J components secreted in exosomes. Immunosuppressive domain peptide (ISD) of envelope subunit transmembrane (TM) and gag of ALV-J were secreted in Exo-J. It has been reported that HIV gag was budded from endosome-like domains of the T cell plasma membrane. But env protein was first detected in exosomes from retrovirus infected cells. We found that Exo-J caused negative effects on splenocytes in a dose-dependant manner by flow cytometric analysis. And low dose of Exo-J activated immune activity of splenocytes, while high dose possessed immunosuppressive properties. Interestingly, Exo-J has no significant effects on the immunosuppression induced by ALV-J, and the immunosuppressive effects induced by Exo-J lower than that by ALV-J. Taken together, our data indicated that Exo-J supplied a microenvironment for the replication and transformation of ALV-J.


Assuntos
Vírus da Leucose Aviária/fisiologia , Leucose Aviária/virologia , Exossomos/metabolismo , Produtos do Gene env/metabolismo , Produtos do Gene gag/metabolismo , Animais , Vírus da Leucose Aviária/patogenicidade , Linhagem Celular , Galinhas , Interações Hospedeiro-Patógeno , Terapia de Imunossupressão , Microscopia Eletrônica de Transmissão
4.
Microb Pathog ; 104: 48-55, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28065818

RESUMO

Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces growth retardation and neoplasia in chickens, leading to enormous economic losses in poultry industry. Increasing evidences showed several signal pathways involved in ALV-J infection. However, what signaling pathway involved in growth retardation is largely unknown. To explore the possible signaling pathway, we tested the cell proliferation and associated miRNAs in ALV-J infected CEF cells by CCK-8 and Hiseq, respectively. The results showed that cell proliferation was significantly inhibited by ALV-J and three associated miRNAs were identified to target Wnt/ß-catenin pathway. To verify the Wnt/ß-catenin pathway involved in cell growth retardation, we analyzed the key molecules of Wnt pathway in ALV-J infected CEF cells. Our data demonstrated that protein expression of ß-catenin was decreased significantly post ALV-J infection compared with the normal (P < 0.05). The impact of this down-regulation caused low expression of known target genes (Axin2, CyclinD1, Tcf4 and Lef1). Further, to obtain in vivo evidence, we set up an ALV-J infection model. Post 7 weeks infection, ALV-J infected chickens showed significant growth retardation. Subsequent tests showed that the expression of ß-catenin, Tcf1, Tcf4, Lef1, Axin2 and CyclinD1 were down-regulated in muscles of growth retardation chickens. Taken together, all data demonstrated that chicken growth retardation caused by ALV-J associated with down-regulated Wnt/ß-catenin signaling pathway.


Assuntos
Vírus da Leucose Aviária/fisiologia , Leucose Aviária/metabolismo , Leucose Aviária/virologia , Galinhas , Fenótipo , Via de Sinalização Wnt , Animais , Leucose Aviária/complicações , Leucose Aviária/genética , Vírus da Leucose Aviária/classificação , Linhagem Celular , Proliferação de Células , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Nano Lett ; 16(9): 5737-41, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27513317

RESUMO

Intermolecular p-orbital overlaps in unsaturated π-conjugated systems, such as graphene and fluorescent molecules with aromatic structure, serve as the electron-exchanged path. Using Raman-mapping measurements, we observe that the fluorescence intensity of fluorescein isothiocyanate (FITC) is quenched by graphene, whereas it persists in graphene-absent substrates (SiO2). After identifying a mechanism related to photon-induced electron transfer (PET) that contributes to this fluorescence quenching phenomenon, we validate this mechanism by conducting analyses on Dirac point shifts of FITC-coated graphene. From these shifts, Fermi level elevation and the electron-concentration surge in graphene upon visible-light impingements are acquired. Finally, according to this mechanism, graphene-based biosensors are fabricated to show the sensing capability of measuring fluorescently labeled-biomolecule concentrations.

6.
J Vet Sci ; 21(3): e49, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32476322

RESUMO

BACKGROUND: Coinfection with avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) is common in chickens, and the molecular mechanism of the synergistic pathogenic effects of the coinfection is not clear. Exosomes have been identified as new players in the pathogenesis of retroviruses. The different functions of exosomes depend on their cargo components. OBJECTIVES: The aim of this study was to investigate the function of co-regulation differentially expressed proteins in exosomes on coinfection of ALV-J and REV. METHODS: Here, viral replication in CEF cells infected with ALV-J, REV or both was detected by immunofluorescence microscopy. Then, we analyzed the exosomes isolated from supernatants of chicken embryo fibroblast (CEF) cells single infected and coinfected with ALV-J and REV by mass spectrometry. KEGG pathway enrichment analyzed the co-regulation differentially expressed proteins in exosomes. Next, we silenced and overexpressed tripartite motif containing 62 (TRIM62) to evaluate the effects of TRIM62 on viral replication and the expression levels of NCK-association proteins 1 (NCKAP1) and actin-related 2/3 complex subunit 5 (ARPC5) determined by quantitative reverse transcription polymerase chain reaction. RESULTS: The results showed that coinfection of ALV-J and REV promoted the replication of each other. Thirty proteins, including TRIM62, NCK-association proteins 1 (NCKAP1, also known as Nap125), and Arp2/3-5, ARPC5, were identified. NCKAP1 and ARPC5 were involved in the actin cytoskeleton pathway. TRIM62 negatively regulated viral replication and that the inhibition of REV was more significant than that on ALV-J in CEF cells coinfected with TRIM62. In addition, TRIM62 decreased the expression of NCKAP1 and increased the expression of ARPC5 in coinfected CEF cells. CONCLUSIONS: Collectively, our results indicated that coinfection with ALV-J and REV competitively promoted each other's replication, the actin cytoskeleton played an important role in the coinfection mechanism, and TRIM62 regulated the actin cytoskeleton.


Assuntos
Proteínas Aviárias/genética , Coinfecção/veterinária , Regulação da Expressão Gênica , Doenças das Aves Domésticas/fisiopatologia , Infecções por Retroviridae/veterinária , Proteínas com Motivo Tripartido/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Leucose Aviária/fisiopatologia , Leucose Aviária/virologia , Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/metabolismo , Coinfecção/fisiopatologia , Coinfecção/virologia , Doenças das Aves Domésticas/virologia , Vírus da Reticuloendoteliose/fisiologia , Infecções por Retroviridae/fisiopatologia , Infecções por Retroviridae/virologia , Proteínas com Motivo Tripartido/metabolismo
7.
Adv Mater ; 31(35): e1902431, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31265203

RESUMO

The precise control of the shape and quality of 2D materials during chemical vapor deposition (CVD) processes remains a challenging task, due to a lack of understanding of their underlying growth mechanisms. The existence of a fractal-growth-based mechanism in the CVD synthesis of several 2D materials is revealed, to which a modified traditional fractal theory is applied in order to build a 2D diffusion-limited aggregation (2D-DLA) model based on an atomic-scale growth mechanism. The strength of this model is validated by the perfect correlation between theoretically simulated data, predicted by 2D-DLA, and experimental results obtained from the CVD synthesis of graphene, hexagonal boron nitride, and transition metal dichalcogenides. By applying the 2D-DLA model, it is also discovered that the single-domain net growth rate (SD-NGR) plays a crucial factor in governing the shape and quality of 2D-material crystals. By carefully tuning SD-NGR, various fractal-morphology high-quality single-crystal 2D materials are synthesized, achieving, for the first time, the precise control of 2D-material CVD growth. This work lays the theoretical foundation for the precise adjustment of the morphologies and physical properties of 2D materials, which is essential to the use of fractal-shaped nanomaterials for the fabrication of new-generation neural-network nanodevices.

8.
ACS Appl Mater Interfaces ; 10(51): 44862-44870, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30489058

RESUMO

Chemical vapor deposition (CVD) of two-dimensional materials has been an active area of research in recent years because it is a scalable process for obtaining thin films that can be used to fabricate devices. The growth mechanism for hexagonal boron nitride (h-BN) on metal catalyst substrates has been described to be either surface energy-driven or diffusion-driven. In this work, h-BN is grown in a CVD system on Ni single-crystal substrates as a function of Ni crystallographic orientation to clarify the competing forces acting on the growth mechanism. We observed that the thickness of the h-BN film depends on the Ni substrate orientation, with the growth rate increasing from the (100) surface to the (111) surface and the highest on the (110) surface. We associate the observed results with surface reactivity and diffusivity differences for different Ni orientations. Boron and nitrogen diffuse and precipitate from the Ni bulk to form thin multilayer h-BN. Our results serve to clarify the h-BN CVD growth mechanism which has been previously ascribed to a surface energy-driven growth mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA