Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467355

RESUMO

The formation of brain vasculature is an essential step during central nervous system development. The molecular mechanism underlying brain angiogenesis remains incompletely understood. The role of Atg7, an autophagy-related protein, in brain angiogenesis was investigated in this study. We found that the microvessel density in mice brains with endothelial-specific knockout of Atg7 (Atg7 EKO) was significantly decreased compared to wild-type control. Consistently, in vitro angiogenesis assays showed that Atg7 knockdown impaired angiogenesis in brain microvascular endothelial cells. Further results indicated that knockdown of Atg7 reduced interleukin-6 (IL-6) expression in brain microvascular endothelial cells, which is mediated by NF-κB-dependent transcriptional control. Interestingly, exogenous IL-6 restored the impaired angiogenesis and reduced cell motility caused by Atg7 knockdown. These results demonstrated that Atg7 has proangiogenic activity in brain angiogenesis which is mediated by IL-6 production in a NF-κB-dependent manner.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Encéfalo/irrigação sanguínea , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Neovascularização Fisiológica/fisiologia , Análise de Variância , Animais , Proteína 7 Relacionada à Autofagia/genética , Movimento Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais , Humanos , Camundongos , Camundongos Knockout , Microvasos/crescimento & desenvolvimento , Microvasos/metabolismo , Neovascularização Fisiológica/genética
2.
Front Neurol ; 9: 998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555402

RESUMO

Ischemic strokes often result in cerebral injury due to ischemia/reperfusion (I/R). Although the local inflammatory responses are known to play a primary role in the brain I/R injury, the underlying mechanism remains unclear. In the current study, we investigated the effect of brain endothelial Atg7 (autophagy related 7) depletion in the acute brain injury induced by ischemia and reperfusion. Endothelial knockout of Atg7 in mice (Atg7 eKO) was found to significantly attenuate both the infarct volume and the neurological defects induced by I/R when compared to the controls. In fact, brain inflammatory responses induced by I/R were alleviated by the Atg7 eKO. Furthermore, an increased expression of pro-inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α, was observed in brain endothelial cells in response to oxygen/glucose depletion/reoxygenation, which was decreased by the shRNA-mediated Atg7 knockdown. Interestingly, Atg7 knockdown reduced IKKß phosphorylation, leading to NF-κB deactivation and downregulation of the pro-inflammatory cytokines mRNA levels. Further, Atg7 transcriptional regulation function is independent of its role in autophagy. Taken together, our results demonstrated that brain endothelial Atg7 contributes to brain damage during I/R by modulating the expression of pro-inflammatory cytokines. Depletion of Atg7 in brain endothelium has a neuroprotective effect against the ischemia/reperfusion-induced acute cerebral injury during stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA