Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(13): 3127-3137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580890

RESUMO

Monoclonal antibodies (mAbs) represent the largest class of therapeutic protein drug products. mAb glycosylation produces a heterogeneous, analytically challenging distribution of glycoforms that typically should be adequately characterized because glycosylation-based product quality attributes (PQAs) can impact product quality, immunogenicity, and efficacy. In this study, two products were compared using a panel of analytical methods. Two high-resolution mass spectrometry (HRMS) workflows were used to analyze N-glycans, while nuclear magnetic resonance (NMR) was used to generate monosaccharide fingerprints. These state-of-the-art techniques were compared to conventional analysis using hydrophilic interaction chromatography (HILIC) coupled with fluorescence detection (FLD). The advantages and disadvantages of each method are discussed along with a comparison of the identified glycan distributions. The results demonstrated agreement across all methods for major glycoforms, demonstrating how confidence in glycan characterization is increased by combining orthogonal analytical methodologies. The full panel of methods used represents a diverse toolbox that can be selected from based on the needs for a specific product or analysis.


Assuntos
Anticorpos Monoclonais , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Polissacarídeos , Glicosilação , Anticorpos Monoclonais/química , Polissacarídeos/análise , Polissacarídeos/química , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Cromatografia Líquida/métodos
2.
Chemistry ; 27(29): 7882-7886, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33780575

RESUMO

A series of photoswitchable cyclopentadienone derivative dimers bearing bromo, thienyl, 4-(dimethylamino)phenyl, 3-pyridinyl, 4-nitrophenyl and cyano groups was designed and facilely synthesized. Photoswitching properties such as the photoconversions in the photostationary state (PSS), the thermal kinetics and thermal half-lives of photoisomers were systematically investigated. These photoswitches show high fatigue resistance and large photoconversions in the PSS. This work proves that the photoswitching properties of photoswitches based on cyclopentadienone dimers can be tuned by substitution groups and also pave the way to functionalize the cyclopentadienone derivative dimer-based photoswitch, which is important for its future applications.

3.
Mol Pharm ; 18(1): 441-450, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305950

RESUMO

The N-glycosylation pattern of Asn-297 may have impacts on monoclonal antibody (mAb) drug plasma clearance, antibody-dependent cell mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). Notably, the changes in the relative abundance of certain minor glycans, like the afucosylation, high-mannose, or galactosylation are known to change mAb properties and functions. Here, a middle-down NMR spectroscopy based analytical procedure was applied to assess the composition and structure of glycans on adalimumab and trastuzumab without glycan cleavage from the mAbs. The anomeric 2D 1H-13C spectra showed distinct patterns that could be used to profile and differentiate mAb glycan compositions. Specifically, the anomeric C1/H1 resonances from N-acetylglucosamine (GlcNAc2 and -5) and mannose (Man4) were identified as characteristic peaks for key glycan anomeric linkages and branching states. They were also utilized for measuring the relative abundance of minor glycans of total afucosylation (aFuc%), high mannose (HM%), and branch specific galactosylation (Gal1-3% and Gal1-6%). The obtained total aFuc% value of 11-12% was similar between the two mAbs; however, trastuzumab had significantly lower level of high mannose and a higher level of galactosylation than adalimumab. Overall, the 2D-NMR measurements provided functionally relevant mAb glycan composition and structure information. The method was deemed fit-for-purpose for assessment of these mAb quality attributes and involved fewer chemical preparation steps than the classical approaches that cleave glycans prior to making measurements.


Assuntos
Anticorpos Monoclonais/farmacologia , Polissacarídeos/farmacologia , Acetilglucosamina/farmacologia , Adalimumab/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Manose/química , Trastuzumab/farmacologia
4.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299526

RESUMO

Peptide and protein drug molecules fold into higher order structures (HOS) in formulation and these folded structures are often critical for drug efficacy and safety. Generic or biosimilar drug products (DPs) need to show similar HOS to the reference product. The solution NMR spectroscopy is a non-invasive, chemically and structurally specific analytical method that is ideal for characterizing protein therapeutics in formulation. However, only limited NMR studies have been performed directly on marketed DPs and questions remain on how to quantitively define similarity. Here, NMR spectra were collected on marketed peptide and protein DPs, including calcitonin-salmon, liraglutide, teriparatide, exenatide, insulin glargine and rituximab. The 1D 1H spectral pattern readily revealed protein HOS heterogeneity, exchange and oligomerization in the different formulations. Principal component analysis (PCA) applied to two rituximab DPs showed consistent results with the previously demonstrated similarity metrics of Mahalanobis distance (DM) of 3.3. The 2D 1H-13C HSQC spectral comparison of insulin glargine DPs provided similarity metrics for chemical shift difference (Δδ) and methyl peak profile, i.e., 4 ppb for 1H, 15 ppb for 13C and 98% peaks with equivalent peak height. Finally, 2D 1H-15N sofast HMQC was demonstrated as a sensitive method for comparison of small protein HOS. The application of NMR procedures and chemometric analysis on therapeutic proteins offer quantitative similarity assessments of DPs with practically achievable similarity metrics.


Assuntos
Peptídeos/química , Preparações Farmacêuticas/química , Proteínas/química , Calcitonina/química , Exenatida/química , Insulina Glargina/química , Liraglutida/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Rituximab/química , Teriparatida/química
5.
Angew Chem Int Ed Engl ; 60(43): 23289-23298, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34436811

RESUMO

Multi-scale calcium (Ca2+ ) dynamics, exhibiting wide-ranging temporal kinetics, constitutes a ubiquitous mode of signal transduction. We report a novel endoplasmic-reticulum (ER)-targeted Ca2+ indicator, R-CatchER, which showed superior kinetics in vitro (koff ≥2×103  s-1 , kon ≥7×106  M-1 s-1 ) and in multiple cell types. R-CatchER captured spatiotemporal ER Ca2+ dynamics in neurons and hotspots at dendritic branchpoints, enabled the first report of ER Ca2+ oscillations mediated by calcium sensing receptors (CaSRs), and revealed ER Ca2+ -based functional cooperativity of CaSR. We elucidate the mechanism of R-CatchER and propose a principle to rationally design genetically encoded Ca2+ indicators with a single Ca2+ -binding site and fast kinetics by tuning rapid fluorescent-protein dynamics and the electrostatic potential around the chromophore. The design principle is supported by the development of G-CatchER2, an upgrade of our previous (G-)CatchER with improved dynamic range. Our work may facilitate protein design, visualizing Ca2+ dynamics, and drug discovery.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/análise , Retículo Endoplasmático/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/química , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/química , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Engenharia de Proteínas , Espectrometria de Fluorescência
6.
J Biol Chem ; 292(44): 18161-18168, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28887303

RESUMO

Dynamic nuclear polarization provides sensitivity improvements that make NMR a viable method for following metabolic conversions in real time. There are now many in vivo applications to animal systems and even to diagnosis of human disease. However, application to microbial systems is rare. Here we demonstrate its application to the pathogenic protozoan, Trypanosoma brucei, using hyperpolarized 13C1 pyruvate as a substrate and compare the parasite metabolism with that of commonly cultured mammalian cell lines, HEK-293 and Hep-G2. Metabolic differences between insect and bloodstream forms of T. brucei were also investigated. Significant differences are noted with respect to lactate, alanine, and CO2 production. Conversion of pyruvate to CO2 in the T. brucei bloodstream form provides new support for the presence of an active pyruvate dehydrogenase in this stage.


Assuntos
Metabolismo Energético , Ácido Pirúvico/metabolismo , Trypanosoma brucei brucei/metabolismo , Alanina , Algoritmos , Animais , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Células Imobilizadas , Trato Gastrointestinal/parasitologia , Células HEK293 , Células Hep G2 , Humanos , Cinética , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/isolamento & purificação , Tripanossomíase/sangue , Tripanossomíase/parasitologia , Tripanossomíase/veterinária , Moscas Tsé-Tsé/parasitologia
7.
Biochem J ; 474(24): 4035-4051, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28963343

RESUMO

Calmodulin (CaM) is an intracellular Ca2+ transducer involved in numerous activities in a broad Ca2+ signaling network. Previous studies have suggested that the Ca2+/CaM complex may participate in gap junction regulation via interaction with putative CaM-binding motifs in connexins; however, evidence of direct interactions between CaM and connexins has remained elusive to date due to challenges related to the study of membrane proteins. Here, we report the first direct interaction of CaM with Cx45 (connexin45) of γ-family in living cells under physiological conditions by monitoring bioluminescence resonance energy transfer. The interaction between CaM and Cx45 in cells is strongly dependent on intracellular Ca2+ concentration and can be blocked by the CaM inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7). We further reveal a CaM-binding site at the cytosolic loop (residues 164-186) of Cx45 using a peptide model. The strong binding (Kd ∼ 5 nM) observed between CaM and Cx45 peptide, monitored by fluorescence-labeled CaM, is found to be Ca2+-dependent. Furthermore, high-resolution nuclear magnetic resonance spectroscopy reveals that CaM and Cx45 peptide binding leads to global chemical shift changes of 15N-labeled CaM, but does not alter the size of the structure. Observations involving both N- and C-domains of CaM to interact with the Cx45 peptide differ from the embraced interaction with Cx50 from another connexin family. Such interaction further increases Ca2+ sensitivity of CaM, especially at the N-terminal domain. Results of the present study suggest that both helicity and the interaction mode of the cytosolic loop are likely to contribute to CaM's modulation of connexins.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Cálcio/metabolismo , Calmodulina/metabolismo , Conexinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/química , Conexinas/química , Transferência de Energia , Células HEK293 , Células HeLa , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Transdução de Sinais
8.
J Biol Chem ; 291(38): 20085-95, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27471271

RESUMO

Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the ß-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED ß-strands and the other involving GFCC'C″ ß-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions.


Assuntos
Antígenos CD/química , Moléculas de Adesão Celular/química , Multimerização Proteica/fisiologia , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Glicosilação , Células HEK293 , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
10.
J Biol Chem ; 289(48): 33529-42, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25305020

RESUMO

Numerous in vivo functional studies have indicated that the dimeric extracellular domain (ECD) of the CaSR plays a crucial role in regulating Ca(2+) homeostasis by sensing Ca(2+) and l-Phe. However, direct interaction of Ca(2+) and Phe with the ECD of the receptor and the resultant impact on its structure and associated conformational changes have been hampered by the large size of the ECD, its high degree of glycosylation, and the lack of biophysical methods to monitor weak interactions in solution. In the present study, we purified the glycosylated extracellular domain of calcium-sensing receptor (CaSR) (ECD) (residues 20-612), containing either complex or high mannose N-glycan structures depending on the host cell line employed for recombinant expression. Both glycosylated forms of the CaSR ECD were purified as dimers and exhibit similar secondary structures with ∼ 50% α-helix, ∼ 20% ß-sheet content, and a well buried Trp environment. Using various spectroscopic methods, we have shown that both protein variants bind Ca(2+) with a Kd of 3.0-5.0 mm. The local conformational changes of the proteins induced by their interactions with Ca(2+) were visualized by NMR with specific (15)N Phe-labeled forms of the ECD. Saturation transfer difference NMR approaches demonstrated for the first time a direct interaction between the CaSR ECD and l-Phe. We further demonstrated that l-Phe increases the binding affinity of the CaSR ECD for Ca(2+). Our findings provide new insights into the mechanisms by which Ca(2+) and amino acids regulate the CaSR and may pave the way for exploration of the structural properties of CaSR and other members of family C of the GPCR superfamily.


Assuntos
Cálcio/química , Multimerização Proteica , Receptores de Detecção de Cálcio/química , Cálcio/metabolismo , Glicosilação , Células HEK293 , Humanos , Ligantes , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 108(39): 16265-70, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21914846

RESUMO

Quantitative analysis of Ca(2+) fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca(2+)-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca(2+) binding site in the EGFP. One of them, calcium sensor for detecting high concentration in the ER, exhibits unprecedented Ca(2+) release kinetics with an off-rate estimated at around 700 s(-1) and appropriate Ca(2+) binding affinity, likely attributable to local Ca(2+)-induced conformational changes around the designed Ca(2+) binding site and reduced chemical exchange between two chromophore states. Calcium sensor for detecting high concentration in the ER reported considerable differences in ER Ca(2+) dynamics and concentration among human epithelial carcinoma cells (HeLa), human embryonic kidney 293 cells (HEK-293), and mouse myoblast cells (C2C12), enabling us to monitor SR luminal Ca(2+) in flexor digitorum brevis muscle fibers to determine the mechanism of diminished SR Ca(2+) release in aging mice. This sensor will be invaluable in examining pathogenesis characterized by alterations in Ca(2+) homeostasis.


Assuntos
Cálcio/metabolismo , Compartimento Celular , Frações Subcelulares/metabolismo , Fatores Etários , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Camundongos
12.
Int Immunopharmacol ; 129: 111660, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350357

RESUMO

BACKGROUND: Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE: This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS: hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS: hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION: Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.


Assuntos
Fluoresceínas , Interleucina-10 , Células-Tronco Mesenquimais , Succinimidas , Camundongos , Humanos , Animais , Interleucina-10/farmacologia , Âmnio , Isoproterenol , Remodelação Ventricular , Macrófagos , Inflamação/induzido quimicamente , Inflamação/terapia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Fibrose , Cardiomegalia
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2309-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311573

RESUMO

Calcium ions, which are important signaling molecules, can be detected in the endoplasmic reticulum by an engineered mutant of green fluorescent protein (GFP) designated CatchER with a fast off-rate. High resolution (1.78-1.20 Å) crystal structures were analyzed for CatchER in the apo form and in complexes with calcium or gadolinium to probe the binding site for metal ions. While CatchER exhibits a 1:1 binding stoichiometry in solution, two positions were observed for each of the metal ions bound within the hand-like site formed by the carboxylate side chains of the mutated residues S147E, S202D, Q204E, F223E and T225E that may be responsible for its fast kinetic properties. Comparison of the structures of CatchER, wild-type GFP and enhanced GFP confirmed that different conformations of Thr203 and Glu222 are associated with the two forms of Tyr66 of the chromophore which are responsible for the absorbance wavelengths of the different proteins. Calcium binding to CatchER may shift the equilibrium for conformational population of the Glu222 side chain and lead to further changes in its optical properties.


Assuntos
Técnicas Biossensoriais , Cálcio/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sítios de Ligação , Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Cristalografia por Raios X , Proteínas de Fluorescência Verde/química , Cinética , Modelos Moleculares , Mutação Puntual , Conformação Proteica , Engenharia de Proteínas , Espectrometria de Fluorescência
14.
Blood Press ; 22(5): 312-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23387440

RESUMO

OBJECTIVE: This study was to evaluate the relationship of atherosclerotic renal artery stenosis (ARAS) with extracranial carotid arteries atherosclerosis (ECAS) and intracranial cerebral atherosclerosis (ICAS) in ischemic stroke (IS) patients. METHODS: This study was a prospective cohort analysis of consecutive patients with IS who had not a history of renal artery stenosis (RAS). Abdominal aortography was performed to screen for RAS after the cerebrovascular diagnostic procedure. Multivariate logistic regression analysis was performed to investigate the association of the clinical variables with significant ARAS (≥ 50%). RESULTS: ARAS was identified in 61 (23.1%) of all patients and 34 patients (12.9%) had significant ARAS (≥ 50%). ECAS (≥ 70%) and ICAS (≥ 50%) was found in 66 (25%) and 48 (18.2%) respectively. Patients with ECAS (≥ 70%) were more likely to have significant ARAS than patients without ECAS (28.8% vs 6.2%, p < 0.001). In multivariate analysis, only advanced age (≥ 60 years) (OR = 2.84, 95% CI 1.01-7.91) and ECAS (≥ 70%) (OR = 5.27, 95% CI 2.396-11.60) were independent risk factors for significant ARAS. CONCLUSION: Incidental ARAS is a relatively common finding among patients with IS, and there is a close relationship between ARAS and ECAS. Abdominal aortography should be performed to identify ARAS in elderly patients with IS, especially combined with severe ECAS.


Assuntos
Aterosclerose/patologia , Doenças das Artérias Carótidas/patologia , Doenças Arteriais Cerebrais/patologia , Obstrução da Artéria Renal/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
15.
J Healthc Eng ; 2021: 6674744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953899

RESUMO

Background: Osteoarthritis (OA) is a chronic and degenerative joint disease, which causes stiffness, pain, and decreased function. At the early stage of OA, nonsteroidal anti-inflammatory drugs (NSAIDs) are considered the first-line treatment. However, the efficacy and utility of available drug therapies are limited. We aim to use bioinformatics to identify potential genes and drugs associated with OA. Methods: The genes related to OA and NSAIDs therapy were determined by text mining. Then, the common genes were performed for GO, KEGG pathway analysis, and protein-protein interaction (PPI) network analysis. Using the MCODE plugin-obtained hub genes, the expression levels of hub genes were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The confirmed genes were queried in the Drug Gene Interaction Database to determine potential genes and drugs. Results: The qRT-PCR result showed that the expression level of 15 genes was significantly increased in OA samples. Finally, eight potential genes were targetable to a total of 53 drugs, twenty-one of which have been employed to treat OA and 32 drugs have not yet been used in OA. Conclusions: The 15 genes (including PTGS2, NLRP3, MMP9, IL1RN, CCL2, TNF, IL10, CD40, IL6, NGF, TP53, RELA, BCL2L1, VEGFA, and NOTCH1) and 32 drugs, which have not been used in OA but approved by the FDA for other diseases, could be potential genes and drugs, respectively, to improve OA treatment. Additionally, those methods provided tremendous opportunities to facilitate drug repositioning efforts and study novel target pharmacology in the pharmaceutical industry.


Assuntos
Osteoartrite , Biologia Computacional/métodos , Mineração de Dados , Descoberta de Drogas , Perfilação da Expressão Gênica , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Mapas de Interação de Proteínas/genética
16.
iScience ; 24(3): 102129, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665552

RESUMO

The precise spatiotemporal characteristics of subcellular calcium (Ca2+) transients are critical for the physiological processes. Here we report a green Ca2+ sensor called "G-CatchER+" using a protein design to report rapid local ER Ca2+ dynamics with significantly improved folding properties. G-CatchER+ exhibits a superior Ca2+ on rate to G-CEPIA1er and has a Ca2+-induced fluorescence lifetimes increase. G-CatchER+ also reports agonist/antagonist triggered Ca2+ dynamics in several cell types including primary neurons that are orchestrated by IP3Rs, RyRs, and SERCAs with an ability to differentiate expression. Upon localization to the lumen of the RyR channel (G-CatchER+-JP45), we report a rapid local Ca2+ release that is likely due to calsequestrin. Transgenic expression of G-CatchER+ in Drosophila muscle demonstrates its utility as an in vivo reporter of stimulus-evoked SR local Ca2+ dynamics. G-CatchER+ will be an invaluable tool to examine local ER/SR Ca2+ dynamics and facilitate drug development associated with ER dysfunction.

17.
Food Res Int ; 132: 109064, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331635

RESUMO

Knowledge of the changes in the phospholipid molecular species during processing is helpful to understanding the complicated mechanisms of lipid degradation and transformation. The shotgun lipidomics strategy was utilized to analyze the phospholipid (PL) molecular species in raw Pekin duck and the subsequent dynamic changes that occur during the processing of water-boiled salted duck (WSD). Only 110 PL molecular species have been identified in raw duck meat, while a total of 119 PL molecular species were identified during processing, including 33 phosphatidylcholines, 22 phosphatidylethanolamines, 13 phosphatidylglycerols, 18 phosphatidylinositols and 33 phosphatidylserines. Most of the content of PL molecular species gradually decreased during processing, while the content of most of the lysophospholipids (LPLs) increased. After reaching a maximum, the LPLs were obviously reduced during the 3 d of dry-ripening. The results showed that processing techniques, such as dry-curing, dry-ripening and boiling, had a significant effect on the changes in the PLs in WSD. We further screened 10 PL molecular markers, which can be used to distinguish different operating units.


Assuntos
Conservação de Alimentos/métodos , Lipidômica/métodos , Produtos da Carne/análise , Fosfolipídeos/química , Cloreto de Sódio/análise , Animais , Patos , Lisofosfolipídeos , Água
18.
Mol Cancer Res ; 6(4): 592-603, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18403638

RESUMO

Loss of chromosome 13q regions in esophageal squamous cell carcinoma (ESCC) is a frequent event. Monochromosome transfer approaches provide direct functional evidence for tumor suppression by chromosome 13 in SLMT-1, an ESCC cell line, and identify critical regions at 13q12.3, 13q14.11, and 13q14.3. Differential gene expression profiles of three tumor-suppressing microcell hybrids (MCH) and their tumorigenic parental SLMT-1 cell line were revealed by competitive hybridization using 19k cDNA oligonucleotide microarrays. Nine candidate 13q14 tumor-suppressor genes (TSG), including RB1, showed down-regulation in SLMT-1, compared with NE1, an immortalized normal esophageal epithelial cell line; their average gene expression was restored in MCHs compared with SLMT-1. Reverse transcription-PCR validated gene expression levels in MCHs and a panel of ESCC cell lines. Results suggest that the tumor-suppressing effect is not attributed to RB1, but instead likely involves thrombospondin type I domain-containing 1 (THSD1), a novel candidate TSG mapping to 13q14. Quantitative reverse transcription-PCR detected down-regulation of THSD1 expression in 100% of ESCC and other cancer cell lines. Mechanisms for THSD1 silencing in ESCC involved loss of heterozygosity and promoter hypermethylation, as analyzed by methylation-specific PCR and clonal bisulfite sequencing. Transfection of wild-type THSD1 into SLMT-1 resulted in significant reduction of colony-forming ability, hence providing functional evidence for its growth-suppressive activity. These findings suggest that THSD1 is a good candidate TSG.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 13/genética , Neoplasias Esofágicas/genética , Genes Supressores de Tumor , Análise em Microsséries , Trombospondinas/genética , Alelos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Segregação de Cromossomos , Metilação de DNA/efeitos dos fármacos , Desoxicitidina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Hibridização in Situ Fluorescente , Repetições de Microssatélites/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombospondinas/metabolismo , Transfecção , Ensaio Tumoral de Célula-Tronco
19.
Magn Reson Imaging ; 53: 173-179, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29958867

RESUMO

PURPOSE: To extend the null signal method (NSM) for B1 mapping to 3 T magnetic resonance imaging (MRI). BACKGROUND: The NSM operates in the steady state regime and exploits the linearity of the spoiled gradient recalled echo (SPGR) signal around the 180° flip angle (FA). Using linear regression, B1 maps are derived from three SPGR images acquired at different FAs with a short repetition time. While the conventional NSM allows accurate mapping of B1 for moderate B1 variation, we observed that this method fails for the larger B1 variations typical of high-field MRI. METHODS: We analyzed the effect of the FA range of the acquired SPGR images on B1 determination using the NSM for 3 T MRI through extensive numerical and in vivo analyses. B1 maps derived from the extended angle-range NSM (EA-NSM) were calculated and compared to those derived from the conventional, more restricted angle range, NSM, and to those derived from the reference, but much more time-consuming, double angle method (DAM). Furthermore, we investigated the compatibility of EA-NSM B1 mapping and the half-scan and SENSE reconstruction methods for accelerating acquisition time. RESULTS: Our results show that the use of the conventional FA range leads to substantial inaccuracies in B1 determination. Both numerical and in vivo analyses demonstrate that expanding the FA range of the acquired SPGR images substantially improves the accuracy of B1 maps. Furthermore, B1 maps derived from EA-NSM were demonstrated to be quantitatively comparable to those derived from the lengthy DAM protocol. We also found that B1 maps derived from SPGR images using the EA-NSM and imaging acceleration methods were comparable to those derived from images acquired without acceleration. Finally, the use of half scanning combined with SENSE reconstruction permits whole-brain B1 mapping in ~1 min. CONCLUSIONS: The EA-NSM permits accurate, fast, and practical B1 mapping in a 3 T clinical setting.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Algoritmos , Simulação por Computador , Feminino , Humanos , Aumento da Imagem , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
20.
Chem Asian J ; 13(19): 2934-2938, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30070040

RESUMO

A pair of interconvertible stereoisomers of imide-fused corannulene derivatives was mixed with C60 , which resulted in cocrystallization into a 1:1 segregated packing motif through concave-convex π-π interactions. Only one conformation was observed in the cocrystal owing to guest-induced conformational switching. The 1D assemblies of the complex showed promising applications in organic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA