Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(6): 1184-1205, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744284

RESUMO

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Assuntos
Anoctaminas , Mutação de Sentido Incorreto , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutação de Sentido Incorreto/genética , Masculino , Feminino , Epilepsia/genética , Criança , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estudos de Associação Genética , Linhagem , Cálcio/metabolismo , Genes Dominantes , Pré-Escolar , Células HEK293 , Adolescente
2.
Hum Mol Genet ; 32(12): 2016-2031, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821639

RESUMO

Zinc is an essential trace mineral. Dietary zinc deficiency results in stunted growth, skin lesions, hypogonadism and frequent infections in humans. Mice genetically lacking Slc30a7 suffer from mild zinc deficiency and are prone to development of prostate cancer and insulin resistance. Disease-causing variants or mutations in the human SLC30A7 (ZNT7) gene have not been previously reported. Here, we describe two-boy siblings from a French family with stunted growth, testicular hypoplasia and bone marrow failure. Exome sequencing revealed compound heterozygous variants in ZNT7 consisting of NM_133496.5:c.21dup; p.Asp8ArgfsTer3 and c.842 + 15 T > C inherited from their unaffected mother and father, respectively. The c.21dup variant led to a premature stop codon generated in exon 1 of the ZNT7 coding sequence. RNA-seq analysis demonstrated that the c.842 + 15 T > C variant resulted in a leaky mRNA splicing event generating a premature stop codon right after the splicing donor site of exon 8. Moreover, the expression of ZNT7 protein was remarkably reduced by 80-96% in the affected brothers compared to the control cells. These findings strongly suggest that biallelic variants in SLC30A7 should be considered as a cause of growth retardation, testicular hypoplasia and syndromic bone marrow failure.


Assuntos
Proteínas de Transporte de Cátions , Hipogonadismo , Masculino , Humanos , Camundongos , Animais , Irmãos , Códon sem Sentido , Transtornos da Insuficiência da Medula Óssea , Hipogonadismo/genética , Zinco/metabolismo , Transtornos do Crescimento , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
3.
Am J Hum Genet ; 109(8): 1549-1558, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35858628

RESUMO

Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder.


Assuntos
Lisina , Oxigenases de Função Mista , Transtornos do Neurodesenvolvimento , Alelos , Expressão Gênica , Humanos , Lisina/análogos & derivados , Oxigenases de Função Mista/genética , Transtornos do Neurodesenvolvimento/genética
4.
Am J Hum Genet ; 108(6): 1126-1137, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010604

RESUMO

Dysregulated transforming growth factor TGF-ß signaling underlies the pathogenesis of genetic disorders affecting the connective tissue such as Loeys-Dietz syndrome. Here, we report 12 individuals with bi-allelic loss-of-function variants in IPO8 who presented with a syndromic association characterized by cardio-vascular anomalies, joint hyperlaxity, and various degree of dysmorphic features and developmental delay as well as immune dysregulation; the individuals were from nine unrelated families. Importin 8 belongs to the karyopherin family of nuclear transport receptors and was previously shown to mediate TGF-ß-dependent SMADs trafficking to the nucleus in vitro. The important in vivo role of IPO8 in pSMAD nuclear translocation was demonstrated by CRISPR/Cas9-mediated inactivation in zebrafish. Consistent with IPO8's role in BMP/TGF-ß signaling, ipo8-/- zebrafish presented mild to severe dorso-ventral patterning defects during early embryonic development. Moreover, ipo8-/- zebrafish displayed severe cardiovascular and skeletal defects that mirrored the human phenotype. Our work thus provides evidence that IPO8 plays a critical and non-redundant role in TGF-ß signaling during development and reinforces the existing link between TGF-ß signaling and connective tissue defects.


Assuntos
Doenças Ósseas/etiologia , Doenças Cardiovasculares/etiologia , Doenças do Tecido Conjuntivo/etiologia , Imunidade Celular/imunologia , Mutação com Perda de Função , Perda de Heterozigosidade , beta Carioferinas/genética , Adolescente , Adulto , Animais , Doenças Ósseas/patologia , Doenças Cardiovasculares/patologia , Criança , Doenças do Tecido Conjuntivo/patologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , Peixe-Zebra , beta Carioferinas/metabolismo
5.
Genet Med ; : 101217, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39036894

RESUMO

PURPOSE: Transient Bartter syndrome related to pathogenic variants of MAGED2 is the most recently described antenatal Bartter syndrome. Despite its transient nature, it is the most severe form of Bartter syndrome in the perinatal period. Our aim was to describe 14 new cases and to try to explain the incomplete penetrance in women. METHODS: We report on 14 new cases, including 3 females, and review the 40 cases described to date. We tested the hypothesis that MAGED2 is transcriptionally regulated by differential methylation of its CpG-rich promotor by pyrosequencing of DNA samples extracted from fetal and adult leukocytes and kidney samples. RESULTS: Analysis of the data from 54 symptomatic patients showed spontaneous resolution of symptoms in 27% of cases, persistent complications in 41% of cases and fatality in 32% of cases. Clinical anomalies were reported in 76% of patients, mostly renal anomalies (52%), cardiovascular anomalies (29%) and dysmorphic features (13%). A developmental delay was reported in 24% of patients. Variants were found in all regions of the gene. Methylation analysis of the MAGED2 CpG-rich promotor showed a correlation with gender, independent of age, tissue or presence of symptoms, excluding a role for this mechanism in the incomplete penetrance in women. CONCLUSION: This work enriches the phenotypic and genetic description of this recently described disease, and deepens our understanding of the pathophysiological role and regulation of MAGED2. Finally, by describing the wide range of outcomes in patients, this work opens the discussion on genetic counseling offered to families.

6.
Pediatr Res ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39455856

RESUMO

For more than 20 years there has been speculation about a future in which newborns are routinely screened at birth for genetic disorders using genome sequencing, but prospective large-scale studies assessing this vision have only recently begun. Genome sequencing may provide a means of expanding the scope of conditions included in newborn screening programs and improving the positive predictive value of traditional newborn screening. However, the use of genome sequencing for newborn screening has also raised concerns including acceptability, equity, and scalability. By reviewing the initial results of the GUARDIAN study and contrasting them with other pilot studies investigating the use of genome sequencing for large-scale newborn screening, we highlight how the lessons learned from these studies are shaping the future for the implementation of truly universal and equitable newborn genomic screening.

7.
J Eur Acad Dermatol Venereol ; 38(9): 1818-1827, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38595321

RESUMO

BACKGROUND: Data on dermatological manifestations of Costello syndrome (CS) remain heterogeneous and lack in validated description. OBJECTIVES: To describe the dermatological manifestations of CS; compare them with the literature findings; assess those discriminating CS from other RASopathies, including cardiofaciocutaneous syndrome (CFCS) and the main types of Noonan syndrome (NS); and test for dermatological phenotype-genotype correlations. METHODS: We performed a 10-year, large, prospective, multicentric, collaborative dermatological and genetic study. RESULTS: Thirty-one patients were enrolled. Hair abnormalities were ubiquitous, including wavy or curly hair and excessive eyebrows, respectively in 68% and 56%. Acral excessive skin (AES), papillomas and keratotic papules (PKP), acanthosis nigricans (AN), palmoplantar hyperkeratosis (PPHK) and 'cobblestone' papillomatous papules of the upper lip (CPPUL), were noted respectively in 84%, 61%, 65%, 55% and 32%. Excessive eyebrows, PKP, AN, CCPUL and AES best differentiated CS from CFCS and NS. Multiple melanocytic naevi (>50) may constitute a new marker of attenuated CS associated with intragenic duplication in HRAS. Oral acitretin may be highly beneficial for therapeutic management of PPHK. No significant dermatological phenotype-genotype correlation was determined between patients with and without HRAS c.34G>A (p.G12S). CONCLUSIONS AND RELEVANCE: This validated phenotypic characterization of a large number of patients with CS will allow future researchers to make a positive diagnosis, and to differentiate CS from CFCS and NS.


Assuntos
Síndrome de Costello , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Síndrome de Costello/genética , Síndrome de Costello/complicações , Estudos Prospectivos , Feminino , Masculino , Criança , Proteínas Proto-Oncogênicas p21(ras)/genética , Adolescente , Pré-Escolar , Adulto , Adulto Jovem , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Síndrome de Noonan/complicações , Acantose Nigricans/genética , Diagnóstico Diferencial , Ceratodermia Palmar e Plantar/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Fenótipo , Papiloma/genética , Papiloma/patologia , Acitretina/uso terapêutico , Sobrancelhas/anormalidades , Sobrancelhas/patologia , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/etiologia , Lactente , Ceratolíticos/uso terapêutico , Fácies
8.
JAMA ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446378

RESUMO

Importance: The feasibility of implementing genome sequencing as an adjunct to traditional newborn screening (NBS) in newborns of different racial and ethnic groups is not well understood. Objective: To report interim results of acceptability, feasibility, and outcomes of an ongoing genomic NBS study in a diverse population in New York City within the context of the New York State Department of Health Newborn Screening Program. Design, Setting, and Participants: The Genomic Uniform-screening Against Rare Disease in All Newborns (GUARDIAN) study was a multisite, single-group, prospective, observational investigation of supplemental newborn genome screening with a planned enrollment of 100 000 participants. Parent-reported race and ethnicity were recorded at the time of recruitment. Results of the first 4000 newborns enrolled in 6 New York City hospitals between September 2022 and July 2023 are reported here as part of a prespecified interim analysis. Exposure: Sequencing of 156 early-onset genetic conditions with established interventions selected by the investigators were screened in all participants and 99 neurodevelopmental disorders associated with seizures were optional. Main Outcomes and Measures: The primary outcome was screen-positive rate. Additional outcomes included enrollment rate and successful completion of sequencing. Results: Over 11 months, 5555 families were approached and 4000 (72.0%) consented to participate. Enrolled participants reflected a diverse group by parent-reported race (American Indian or Alaska Native, 0.5%; Asian, 16.5%; Black, 25.1%; Native Hawaiian or Other Pacific Islander, 0.1%; White, 44.7%; 2 or more races, 13.0%) and ethnicity (Hispanic, 44.0%; not Hispanic, 56.0%). The majority of families consented to screening of both groups of conditions (both groups, 90.6%; disorders with established interventions only, 9.4%). Testing was successfully completed for 99.6% of cases. The screen-positive rate was 3.7%, including treatable conditions that are not currently included in NBS. Conclusions and Relevance: These interim findings demonstrate the feasibility of targeted interpretation of a predefined set of genes from genome sequencing in a population of different racial and ethnic groups. DNA sequencing offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots. Additional studies are required to understand if these findings are generalizable to populations of different racial and ethnic groups and whether introduction of sequencing leads to changes in management and improved health outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT05990179.

9.
Int J Paediatr Dent ; 34(2): 145-152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37655712

RESUMO

BACKGROUND: Children with neurodevelopmental disorders (NDDs) often have poor oral health and dental abnormalities. An increasing number of genes have been associated with neurodevelopmental conditions affecting the oral cavity, but the specific dental features associated with many genes remain unknown. AIM: To report the types and frequencies of dental manifestations in children with neurodevelopmental conditions of known genetic cause. DESIGN: A 30-question survey assesing ectodermal and dental features was administered through Simons Searchlight, with which formed a recontactable cohort of individuals with genetic NDDs often associated with autism spectrum disorder (ASD). RESULTS: Data were collected from a largely paediatric population with 620 affected individuals across 39 genetic conditions and 145 unaffected siblings without NDDs for comparison. Drooling, difficulty accessing dental care, late primary teeth eruption, abnormal primary and permanent teeth formation, misshapen nails, and hair loss were more frequent in individuals with NDDs. Additionally, we evidenced an association between three new pathogenic gene variant/oral manifestation pairs: CSNK2A1/unusual primary teeth, DYRK1A/late primary teeth eruption, and PPP2R5D/sialorrhea. CONCLUSION: Our results demonstrate that genetic NDDs caused by mutations in CSNK2A1, DYRK1A, and PP2R5D are associated with unique dental manifestations, and knowledge of these features can be helpful to personalize dental care.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Criança , Humanos , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Cuidadores , Dentição Permanente , Saúde Bucal , Proteína Fosfatase 2
10.
Hum Mol Genet ; 30(19): 1785-1796, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34059922

RESUMO

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant is situated in a loop that might influence the binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining ES, animal modeling, immunohistology and molecular assays.


Assuntos
Perda Auditiva , Peixe-Zebra , Animais , Perda Auditiva/genética , Humanos , Hidrolases , Reflexo de Sobressalto , Ubiquitina , Proteases Específicas de Ubiquitina , Peixe-Zebra/genética
11.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058759

RESUMO

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Assuntos
Anormalidades Múltiplas/genética , Disfunção Cognitiva/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Dedos/anormalidades , Mutação em Linhagem Germinativa , Defeitos dos Septos Cardíacos/genética , Polidactilia/genética , Dedos do Pé/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Animais , Sequência de Bases , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/deficiência , Feminino , Dedos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Defeitos dos Septos Cardíacos/diagnóstico , Defeitos dos Septos Cardíacos/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiência , Holoenzimas/genética , Humanos , Recém-Nascido , Masculino , Camundongos , Modelos Moleculares , Mosaicismo , Células NIH 3T3 , Linhagem , Polidactilia/diagnóstico , Polidactilia/patologia , Estrutura Secundária de Proteína , Dedos do Pé/patologia
12.
Am J Med Genet A ; 191(9): 2428-2432, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462082

RESUMO

Mitogen-activated protein kinase 8-interacting protein 3 gene (MAPK8IP3) encodes the c-Jun-amino-terminal kinase-interacting protein 3 (JIP3) and is involved in retrograde axonal transport. Heterozygous de novo pathogenic variants in MAPK8IP3 result in a neurodevelopmental disorder with or without brain abnormalities and possible axonal peripheral neuropathy. Whole-exome sequencing was performed on an individual presenting with severe congenital muscle hypotonia of neuronal origin mimicking lethal spinal muscular atrophy. Compound heterozygous rare variants (a splice and a missense) were detected in MAPK8IP3, inherited from the healthy parents. Western blot analysis in a muscle biopsy sample showed a more than 60% decrease in JIP3 expression. Here, we suggest a novel autosomal recessive phenotype of a lower motor neuron disease caused by JIP3 deficiency.


Assuntos
Atrofia Muscular Espinal , Doenças Musculares , Anormalidades Musculoesqueléticas , Humanos , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Fenótipo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
13.
J Med Genet ; 59(7): 669-677, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321324

RESUMO

BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Genótipo , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/genética , Ubiquitina-Proteína Ligases/genética
14.
Genet Med ; 24(7): 1583-1591, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35499524

RESUMO

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fosfoproteínas , Fatores de Transcrição , Regulação da Expressão Gênica , Heterozigoto , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética
15.
Am J Med Genet A ; 188(7): 1954-1963, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285131

RESUMO

DYRK1A haploinsufficiency syndrome is a well-established neurodevelopmental disorder, but detailed information on the range of cognitive and behavioral issues associated with the condition is limited. We studied 24 participants with likely pathogenic or pathogenic variants in DYRK1A through the Simons Searchlight study and systematically assessed their medical history and development using standardized instruments: Vineland Adaptive Behavior Scale II (VABS-II) and Child Behavior Checklists/1.5-5 and 6-18 (CBCL/1.5-5, CBCL/6-18). All of the individuals in the cohort had neurological manifestations including intellectual disability or developmental delay, microcephaly, autism spectrum disorder, and/or seizures. The severity of the neurodevelopmental disorder was variable with a few children scoring in the moderately low range on the adaptive behavior composite score on the VABS-II. This study confirms the association of DYRK1A haploinsufficiency with neurodevelopmental disabilities, microcephaly, autism spectrum disorder, and epilepsy and quantifies the range of adaptive behaviors.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microcefalia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Criança , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Síndrome
16.
Amino Acids ; 54(4): 485-499, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34273022

RESUMO

Hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes-Banka syndrome, a craniofacial-neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.


Assuntos
Lisina , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Animais , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Transtornos do Neurodesenvolvimento/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Fator de Iniciação de Tradução Eucariótico 5A
17.
J Med Genet ; 58(10): 712-716, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32820033

RESUMO

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/genética , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo
18.
Neurogenetics ; 22(2): 137-141, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677721

RESUMO

Intragenic rearrangements and sequence variants in the calmodulin-binding transcription activator 1 gene (CAMTA1) can result in a spectrum of clinical presentations, most notably congenital ataxia with or without intellectual disability. We describe for the first time a myoclonic dystonia-predominant phenotype associated with a novel CAMTA1 sequence variant. Furthermore, by identifying an additional, recurrent CAMTA1 sequence variant in an individual with a more typical neurodevelopmental disease manifestation, we contribute to the elucidation of phenotypic variability associated with CAMTA1 gene mutations.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Códon sem Sentido , Distúrbios Distônicos/genética , Mutação da Fase de Leitura , Deleção de Sequência , Transativadores/genética , Adulto , Pré-Escolar , Feminino , Estudos de Associação Genética , Perda Auditiva/genética , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Fenótipo , Transtornos da Visão/genética , Sequenciamento do Exoma
19.
Hum Genet ; 140(9): 1395-1401, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34313816

RESUMO

The purpose of this study is to describe a Mendelian disorder of DNA damage repair. Phenotypic delineation of two families, one new and one previously published, with overlapping dysmorphic and neurodevelopmental features was undertaken. Functional characterization of DNA damage repair in fibroblasts obtained from the index individuals in each of the two families was pursued. We present new evidence of a distinct disorder caused by biallelic truncating variants in ZNF668 comprising microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism. DNA damage repair defect was observed in fibroblasts of affected individuals. ZNF668 deficiency in humans results in a recognizable autosomal recessive disorder, which we propose to name ZNF668-related ZMAND (ZNF668-related brain malformation, microcephaly, abnormal growth, neurodevelopmental delay, and dysmorphism). Our results add to the growing list of Mendelian disorders of the DNA damage repair machinery.


Assuntos
Anormalidades Múltiplas/genética , Dano ao DNA , Genes Recessivos , Homozigoto , Proteínas Supressoras de Tumor/deficiência , Anormalidades Múltiplas/patologia , Criança , Humanos , Masculino
20.
Genet Med ; 23(4): 740-750, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33239752

RESUMO

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.


Assuntos
Aldeído Oxirredutases/genética , Éteres , Lipídeos , Paraplegia Espástica Hereditária/genética , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA