Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosurg ; 138(1): 104-112, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594891

RESUMO

OBJECTIVE: The authors previously evaluated risk and time course of adverse radiation effects (AREs) following stereotactic radiosurgery (SRS) for brain metastases, excluding lesions treated after prior SRS. In the present analysis they focus specifically on single-fraction salvage SRS to brain metastases previously treated with SRS or hypofractionated SRS (HFSRS), evaluating freedom from progression (FFP) and the risk and time course of AREs. METHODS: Brain metastases treated from September 1998 to May 2019 with single-fraction SRS after prior SRS or HFSRS were analyzed. Serial follow-up magnetic resonance imaging (MRI) and surgical pathology reports were reviewed to score local treatment failure and AREs. The Kaplan-Meier method was used to estimate FFP and risk of ARE measured from the date of repeat SRS with censoring at the last brain MRI. RESULTS: A total of 229 retreated brain metastases in 124 patients were evaluable. The most common primary cancers were breast, lung, and melanoma. The median interval from prior SRS/HFSRS to repeat SRS was 15.4 months, the median prescription dose was 18 Gy, and the median duration of follow-up imaging was 14.5 months. At 1 year after repeat SRS, FFP was 80% and the risk of symptomatic ARE was 11%. The 1-year risk of imaging changes, including asymptomatic RE and symptomatic ARE, was 30%. Among lesions that demonstrated RE, the median time to onset was 6.7 months (IQR 4.7-9.9 months) and the median time to peak imaging changes was 10.1 months (IQR 5.6-13.6 months). Lesion size by quadratic mean diameter (QMD) showed similar results for QMDs ranging from 0.75 to 2.0 cm (1-year FFP 82%, 1-year risk of symptomatic ARE 11%). For QMD < 0.75 cm, the 1-year FFP was 86% and the 1-year risk of symptomatic ARE was only 2%. Outcomes were worse for QMDs 2.01-3.0 cm (1-year FFP 65%, 1-year risk of symptomatic ARE 24%). The risk of symptomatic ARE was not increased with tyrosine kinase inhibitors or immunotherapy before or after repeat SRS. CONCLUSIONS: RE on imaging was common after repeat SRS (30% at 1 year), but the risk of a symptomatic ARE was much less (11% at 1 year). The results of repeat single-fraction SRS were good for brain metastases ≤ 2 cm. The authors recommend an interval ≥ 6 months from prior SRS and a prescription dose ≥ 18 Gy. Alternatives such as HFSRS, laser interstitial thermal therapy, or resection with adjuvant radiation should be considered for recurrent brain metastases > 2 cm.


Assuntos
Neoplasias Encefálicas , Melanoma , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia , Lesões por Radiação/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Melanoma/secundário , Resultado do Tratamento
2.
Med Phys ; 50(5): 2662-2671, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908243

RESUMO

BACKGROUND: Misalignment to the incorrect vertebral body remains a rare but serious patient safety risk in image-guided radiotherapy (IGRT). PURPOSE: Our group has proposed that an automated image-review algorithm be inserted into the IGRT process as an interlock to detect off-by-one vertebral body errors. This study presents the development and multi-institutional validation of a convolutional neural network (CNN)-based approach for such an algorithm using patient image data from a planar stereoscopic x-ray IGRT system. METHODS: X-rays and digitally reconstructed radiographs (DRRs) were collected from 429 spine radiotherapy patients (1592 treatment fractions) treated at six institutions using a stereoscopic x-ray image guidance system. Clinically-applied, physician approved, alignments were used for true-negative, "no-error" cases. "Off-by-one vertebral body" errors were simulated by translating DRRs along the spinal column using a semi-automated method. A leave-one-institution-out approach was used to estimate model accuracy on data from unseen institutions as follows: All of the images from five of the institutions were used to train a CNN model from scratch using a fixed network architecture and hyper-parameters. The size of this training set ranged from 5700 to 9372 images, depending on exactly which five institutions were contributing data. The training set was randomized and split using a 75/25 split into the final training/ validation sets. X-ray/ DRR image pairs and the associated binary labels of "no-error" or "shift" were used as the model input. Model accuracy was evaluated using images from the sixth institution, which were left out of the training phase entirely. This test set ranged from 180 to 3852 images, again depending on which institution had been left out of the training phase. The trained model was used to classify the images from the test set as either "no-error" or "shifted", and the model predictions were compared to the ground truth labels to assess the model accuracy. This process was repeated until each institution's images had been used as the testing dataset. RESULTS: When the six models were used to classify unseen image pairs from the institution left out during training, the resulting receiver operating characteristic area under the curve values ranged from 0.976 to 0.998. With the specificity fixed at 99%, the corresponding sensitivities ranged from 61.9% to 99.2% (mean: 77.6%). With the specificity fixed at 95%, sensitivities ranged from 85.5% to 99.8% (mean: 92.9%). CONCLUSION: This study demonstrated the CNN-based vertebral body misalignment model is robust when applied to previously unseen test data from an outside institution, indicating that this proposed additional safeguard against misalignment is feasible.


Assuntos
Aprendizado Profundo , Humanos , Raios X , Corpo Vertebral , Estudos Retrospectivos , Redes Neurais de Computação
3.
Pract Radiat Oncol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37981253

RESUMO

PURPOSE: Lung blocks for total-body irradiation are commonly used to reduce lung dose and prevent radiation pneumonitis. Currently, molten Cerrobend containing toxic materials, specifically lead and cadmium, is poured into molds to construct blocks. We propose a streamlined method to create 3-dimensional (3D)-printed lung block shells and fill them with tungsten ball bearings to remove lead and improve overall accuracy in the block manufacturing workflow. METHODS AND MATERIALS: 3D-printed lung block shells were automatically generated using an inhouse software, printed, and filled with 2 to 3 mm diameter tungsten ball bearings. Clinical Cerrobend blocks were compared with the physician drawn blocks as well as our proposed tungsten filled 3D-printed blocks. Physical and dosimetric comparisons were performed on a linac. Dose transmission through the Cerrobend and 3D-printed blocks were measured using point dosimetry (ion-chamber) and the on-board Electronic-Portal-Imaging-Device (EPID). Dose profiles from the EPID images were used to compute the full-width-half-maximum and to compare with the treatment-planning-system. Additionally, the coefficient-of-variation in the central 80% of full-width-half-maximum was computed and compared between Cerrobend and 3D-printed blocks. RESULTS: The geometric difference between treatment-planning-system and 3D-printed blocks was significantly lower than Cerrobend blocks (3D: -0.88 ± 2.21 mm, Cerrobend: -2.28 ± 2.40 mm, P = .0002). Dosimetrically, transmission measurements through the 3D-printed and Cerrobend blocks for both ion-chamber and EPID dosimetry were between 42% to 48%, compared with the open field. Additionally, coefficient-of-variation was significantly higher in 3D-printed blocks versus Cerrobend blocks (3D: 4.2% ± 0.6%, Cerrobend: 2.6% ± 0.7%, P < .0001). CONCLUSIONS: We designed and implemented a tungsten filled 3D-printed workflow for constructing total-body-irradiation lung blocks, which serves as an alternative to the traditional Cerrobend based workflow currently used in clinics. This workflow has the capacity of producing clinically useful lung blocks with minimal effort to facilitate the removal of toxic materials from the clinic.

4.
Semin Radiat Oncol ; 32(4): 421-431, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36202444

RESUMO

Recent advancements in artificial intelligence (AI) in the domain of radiation therapy (RT) and their integration into modern software-based systems raise new challenges to the profession of medical physics experts. These AI algorithms are typically data-driven, may be continuously evolving, and their behavior has a degree of (acceptable) uncertainty due to inherent noise in training data and the substantial number of parameters that are used in the algorithms. These characteristics request adaptive, and new comprehensive quality assurance (QA) approaches to guarantee the individual patient treatment quality during AI algorithm development and subsequent deployment in a clinical RT environment. However, the QA for AI-based systems is an emerging area, which has not been intensively explored and requires interactive collaborations between medical doctors, medical physics experts, and commercial/research AI institutions. This article summarizes the current QA methodologies for AI modules of every subdomain in RT with further focus on persistent shortcomings and upcoming key challenges and perspectives.


Assuntos
Algoritmos , Inteligência Artificial , Humanos
5.
Radiol Artif Intell ; 2(2): e190027, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33937817

RESUMO

PURPOSE: To suggest an attention-aware, cycle-consistent generative adversarial network (A-CycleGAN) enhanced with variational autoencoding (VAE) as a superior alternative to current state-of-the-art MR-to-CT image translation methods. MATERIALS AND METHODS: An attention-gating mechanism is incorporated into a discriminator network to encourage a more parsimonious use of network parameters, whereas VAE enhancement enables deeper discrimination architectures without inhibiting model convergence. Findings from 60 patients with head, neck, and brain cancer were used to train and validate A-CycleGAN, and findings from 30 patients were used for the holdout test set and were used to report final evaluation metric results using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). RESULTS: A-CycleGAN achieved superior results compared with U-Net, a generative adversarial network (GAN), and a cycle-consistent GAN. The A-CycleGAN averages, 95% confidence intervals (CIs), and Wilcoxon signed-rank two-sided test statistics are shown for MAE (19.61 [95% CI: 18.83, 20.39], P = .0104), structure similarity index metric (0.778 [95% CI: 0.758, 0.798], P = .0495), and PSNR (62.35 [95% CI: 61.80, 62.90], P = .0571). CONCLUSION: A-CycleGANs were a superior alternative to state-of-the-art MR-to-CT image translation methods.© RSNA, 2020.

6.
Med Phys ; 44(10): 5001-5009, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731267

RESUMO

PURPOSE: Single-isocenter, volumetric-modulated arc therapy (VMAT) stereotactic radiosurgery (SRS) for multiple brain metastases (multimets) can deliver highly conformal dose distributions and reduce overall patient treatment time compared to other techniques. However, treatment planning for multimet cases is highly complex due to variability in numbers and sizes of brain metastases, as well as their relative proximity to organs-at-risk (OARs). The purpose of this study was to automate the VMAT planning of multimet cases through a knowledge-based planning (KBP) approach that adapts single-target SRS dose predictions to multiple target predictions. METHODS: Using a previously published artificial neural network (ANN) KBP system trained on single-target, linac-based SRS plans, 3D dose distribution predictions for multimet patients were obtained by treating each brain lesion as a solitary target and subsequently combining individual dose predictions into a single distribution. Spatial dose distributions di(r→) for each of the i = 1…N lesions were merged using the combination function d(r→)=∑iNdin(r→)1/n. The optimal value of n was determined by minimizing root-mean squared (RMS) difference between clinical multimet plans and predicted dose per unit length along the line profile joining each lesion in the clinical cohort. The gradient measure GM=[3/4π]1/3V50%1/3-V100%1/3 is the primary quality metric for SRS plan evaluation at our institution and served as the main comparative metric between clinical plans and the KBP results. A total of 41 previously treated multimet plans, with target numbers ranging from N = 2-10, were used to validate the ANN predictions and subsequent KBP auto-planning routine. Fully deliverable KBP plans were developed by converting predicted dose distribution into patient-specific optimization objectives for the clinical treatment planning system (TPS). Plan parity was maintained through identical arc configuration and target normalization. Overall plan quality improvements were quantified by calculating the difference between SRS quality metrics (QMs): ΔQM = QMclinical  - QMKBP . In addition to GM, investigated QMs were: volume of brain receiving ≥ 10 Gy (V10 Gy ), volume of brain receiving ≥ 5 Gy (ΔV5 Gy ), heterogeneity index (HI), dose to 0.1 cc of the brainstem (D0.1 cc ), dose to 1% of the optic chiasm (D1% ), and interlesion dose (DIL ). In addition to this quantitative analysis, overall plan quality was assessed via blinded plan comparison of the manual and KBP treatment plans by SRS-specializing physicians. RESULTS: A dose combination factor of n = 8 yielded an integrated dose profile RMS difference of 2.9% across the 41-patient cohort. Multimet dose predictions exhibited ΔGM = 0.07 ± 0.10 cm against the clinical sample, implying either further normal tissue sparing was possible or that dose predictions were slightly overestimating achievable dose gradients. The latter is the more likely explanation, as this bias vanished when dose predictions were converted to deliverable KBP plans ΔGM = 0.00 ± 0.08 cm. Remaining QMs were nearly identical or showed modest improvements in the KBP sample. Equivalent QMs included: ΔV10 Gy  = 0.37 ± 3.78 cc, ΔHI = 0.02 ± 0.08 and ΔDIL  = -2.22 ± 171.4 cGy. The KBP plans showed a greater degree of normal tissue sparing as indicated by brain ΔV5 Gy  = 4.11± 24.05 cc, brainstem ΔD0.1 cc  = 42.8 ± 121.4 cGy, and chiasm ΔD1%  = 50.8 ± 83.0 cGy. In blinded review by SRS-specializing physicians, KBP-generated plans were deemed equivalent or superior in 32/41(78.1%) of the cases. CONCLUSION: Heuristic KBP-driven automated planning in linac-based, single-isocenter treatments for multiple brain metastases maintained or exceeded overall plan quality.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Heurística , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Metástase Neoplásica , Dosagem Radioterapêutica
7.
Pract Radiat Oncol ; 7(6): e569-e578, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28711334

RESUMO

PURPOSE: As knowledge-based planning (KBP) attempts to augment and potentially supplant manual treatment planning, it is imperative to ensure any implementation maintains or improves overall plan quality in any disease site. The purpose of this study was to demonstrate the overall quality of KBP-driven automated stereotactic radiosurgery (SRS) treatment planning using blinded physician comparison and determine systematic factors predictive of physician plan preference to guide future KBP refinement. METHODS AND MATERIALS: Automated noncoplanar volume modulated arc therapy KBP routines were developed for 199 plans across 3 clinical SRS scenarios: isolated lesions (isolated), lesions closely abutting (<3 cm) organs at risk (involved), and single-isocenter multiple metastases (multimet). Overall plan quality and preference were assessed via blinded review of the plans by two SRS physicians. Quantitative quality metrics were also compared to determine systematic differences in the treatment plans. Multiple parameters were investigated as predictors of KBP plan selection. RESULTS: For the isolated, involved, and multimet scenarios, the KBP plans were considered to be superior or equivalent to clinical plans 86.7% (91/105), 81.1% (43/53), and 78.1% (32/41) of the time, respectively. All investigated quality metrics were equivalent or indicated more sparing for all KBP plans. The only nondosimetric predictor was planning target volume in the isolated (P = .02) and involved (P = .05) groups. The dosimetric predictors for the isolated group were gradient measure and heterogeneity index (both P < .01). In the multimet category, the only significant dosimetric predictor was interlesion dose (P = .01). CONCLUSIONS: The fully automated KBP SRS plans were equivalent or superior to previously treated plans in 83.4% (166/199) of cases. In clinical implementation, geometric features found to be predictive of KBP performance can be used to identify plans where KBP results might benefit from further refinement, whereas dosimetric predictive features could be used to further refine KBP optimization priorities.


Assuntos
Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tronco Encefálico/efeitos da radiação , Humanos , Bases de Conhecimento , Médicos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica
8.
Int J Cardiovasc Imaging ; 31(7): 1451-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26156231

RESUMO

Widespread clinical implementation of dynamic CT myocardial perfusion has been hampered by its limited accuracy and high radiation dose. The purpose of this study was to evaluate the accuracy and radiation dose reduction of a dynamic CT myocardial perfusion technique based on first pass analysis (FPA). To test the FPA technique, a pulsatile pump was used to generate known perfusion rates in a range of 0.96-2.49 mL/min/g. All the known perfusion rates were determined using an ultrasonic flow probe and the known mass of the perfusion volume. FPA and maximum slope model (MSM) perfusion rates were measured using volume scans acquired from a 320-slice CT scanner, and then compared to the known perfusion rates. The measured perfusion using FPA (P(FPA)), with two volume scans, and the maximum slope model (P(MSM)) were related to known perfusion (P(K)) by P(FPA) = 0.91P(K) + 0.06 (r = 0.98) and P(MSM) = 0.25P(K) - 0.02 (r = 0.96), respectively. The standard error of estimate for the FPA technique, using two volume scans, and the MSM was 0.14 and 0.30 mL/min/g, respectively. The estimated radiation dose required for the FPA technique with two volume scans and the MSM was 2.6 and 11.7-17.5 mSv, respectively. Therefore, the FPA technique can yield accurate perfusion measurements using as few as two volume scans, corresponding to approximately a factor of four reductions in radiation dose as compared with the currently available MSM. In conclusion, the results of the study indicate that the FPA technique can make accurate dynamic CT perfusion measurements over a range of clinically relevant perfusion rates, while substantially reducing radiation dose, as compared to currently available dynamic CT perfusion techniques.


Assuntos
Circulação Coronária , Modelos Anatômicos , Modelos Cardiovasculares , Imagem de Perfusão do Miocárdio/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Velocidade do Fluxo Sanguíneo , Humanos , Imagem de Perfusão do Miocárdio/métodos , Valor Preditivo dos Testes , Fluxo Pulsátil , Doses de Radiação , Exposição à Radiação/prevenção & controle , Reprodutibilidade dos Testes , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA