RESUMO
Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Fenótipo , Adulto , Sequência de Bases , Doença de Charcot-Marie-Tooth/patologia , Mapeamento Cromossômico , Feminino , Haplótipos/genética , Humanos , Dados de Sequência Molecular , Linhagem , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Nervo Sural/patologiaRESUMO
The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by deleterious SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogeneous and largely remain to be elucidated. In a Bulgarian family affected by autosomal-dominant proximal SMA, we performed genome-wide linkage analysis and whole-exome sequencing and found a heterozygous de novo c.320C>T (p.Ser107Leu) mutation in bicaudal D homolog 2 (Drosophila) (BICD2). Further analysis of BICD2 in a cohort of 119 individuals with non-5q SMA identified a second de novo BICD2 mutation, c.2321A>G (p.Glu774Gly), in a simplex case. Detailed clinical and electrophysiological investigations revealed that both families are affected by a very similar disease course, characterized by early childhood onset, predominant involvement of lower extremities, and very slow disease progression. The amino acid substitutions are located in two interaction domains of BICD2, an adaptor protein linking the dynein molecular motor with its cargo. Our immunoprecipitation and localization experiments in HeLa and SH-SY5Y cells and affected individuals' lymphoblasts demonstrated that p.Ser107Leu causes increased dynein binding and thus leads to accumulation of BICD2 at the microtubule-organizing complex and Golgi fragmentation. In addition, the altered protein had a reduced colocalization with RAB6A, a regulator of vesicle trafficking between the Golgi and the endoplasmic reticulum. The interaction between p.Glu744Gly altered BICD2 and RAB6A was impaired, which also led to their reduced colocalization. Our study identifies BICD2 mutations as a cause of non-5q linked SMA and highlights the importance of dynein-mediated motility in motor neuron function in humans.
Assuntos
Proteínas de Transporte/genética , Genes Dominantes , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , Adulto , Sequência de Bases , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Células HeLa , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Pessoa de Meia-Idade , Atrofia Muscular Espinal/metabolismo , Linhagem , Transporte Proteico , Análise de Sequência de DNA , Adulto Jovem , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
PURPOSE: Homozygosity mapping is an effective approach for detecting molecular defects in consanguineous families by delineating stretches of genomic DNA that are identical by descent. Constant developments in next-generation sequencing created possibilities to combine whole-exome sequencing (WES) and homozygosity mapping in a single step. METHODS: Basic optimization of homozygosity mapping parameters was performed in a group of families with autosomal-recessive (AR) mutations for which both single-nucleotide polymorphism (SNP) array and WES data were available. We varied the criteria for SNP extraction and PLINK thresholds to estimate their effect on the accuracy of homozygosity mapping based on WES. RESULTS: Our protocol showed high specificity and sensitivity for homozygosity detection and facilitated the identification of novel mutations in GAN, GBA2, and ZFYVE26 in four families affected by hereditary spastic paraplegia or Charcot-Marie-Tooth disease. Filtering and mapping with optimized parameters was integrated into the HOMWES (homozygosity mapping based on WES analysis) tool in the GenomeComb package for genomic data analysis. CONCLUSION: We present recommendations for detection of homozygous regions based on WES data and a bioinformatics tool for their identification, which can be widely applied for studying AR disorders.Genet Med 18 6, 600-607.
Assuntos
Proteínas de Transporte/genética , Doença de Charcot-Marie-Tooth/genética , Proteínas do Citoesqueleto/genética , Paraplegia Espástica Hereditária/genética , beta-Glucosidase/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/patologia , Mapeamento Cromossômico , Consanguinidade , Feminino , Glucosilceramidase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/patologia , Sequenciamento do ExomaRESUMO
Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2SH3TC2, histidine-triad nucleotide binding protein 1HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22% of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3% patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies.
Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Mutação , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Genes Recessivos , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas do Tecido Nervoso/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas/genéticaRESUMO
Inherited peripheral neuropathies are a heterogeneous group of disorders that can affect patients of all ages. Children with inherited neuropathy often develop severe disability, but the genetic causes of recessive early-onset axonal neuropathies are not fully known. We have taken a whole-exome sequencing approach to identify causative disease mutations in single patients with early-onset axonal neuropathy. Here, we report compound heterozygous mutations in the tripartite motif containing 2 (TRIM2) gene in a patient with childhood-onset axonal neuropathy, low weight and small muscle mass. We show that the patient fibroblasts are practically devoid of TRIM2, through mRNA and protein instability caused by the mutations. TRIM2 is an E3 ubiquitin ligase that ubiquitinates neurofilament light chain, a component of the intermediate filament in axons. Resembling the findings in our patient's sural nerve biopsy, Trim2-gene trap mice showed axonopathy with accumulations of neurofilaments inside axons. Our results suggest that loss-of-function mutations in TRIM2 are a cause of axonal neuropathy, which we propose to develop as a consequence of axonal accumulation of neurofilaments, secondary to lack of its ubiquitination by TRIM2.
Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Proteínas Nucleares/deficiência , Adolescente , Axônios/patologia , Biópsia , Doença de Charcot-Marie-Tooth/diagnóstico , Exoma , Feminino , Fibroblastos/metabolismo , Humanos , Mutação , Proteínas de Neurofilamentos/metabolismo , Estabilidade de RNA , Análise de Sequência de DNA , Nervo Sural/metabolismo , Nervo Sural/patologiaRESUMO
Familial hypercholesterolemia (FH) is the most common inherited life-threatening disorder of lipid metabolism. Early diagnosis and treatment are the key to reduce the cumulative life-long cardiovascular burden of patients with FH. The high number of LDLR variants described as variants of unknown significance is the largest obstacle to achieve a definitive FH diagnosis. This study established a time- and cost-effective high-throughput cell-based assay to functionally profile LDLR variants, which allowed us to discriminate disruptive rare variants from silent ones. This work generated a valuable resource for systematic functional characterization of LDLR variants solving 1 of the major issues to achieve a definitive FH diagnosis.
RESUMO
Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine-Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot-Marie-Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot-Marie-Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot-Marie-Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.
Assuntos
Idade de Início , Neuropatia Hereditária Motora e Sensorial/genética , Adolescente , Adulto , Idoso , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Lactente , Pessoa de Meia-Idade , Mutação , Fenótipo , Adulto JovemRESUMO
BACKGROUND: Familial Hypercholesterolemia (FH) is a semidominant disorder of the lipid metabolism associated with premature atherosclerosis and coronary heart disease. So far, about 3,000 unique LDLR variants have been described, most of which lack functional evidence proving their effect on LDLR function, despite the important role that functional studies play in variant classification. OBJECTIVE: In this work, we aimed to functionally characterize 13 rare missense variants, identified worldwide and in Portugal, in clinical FH patients. METHODS: LDLR-deficient CHO-ldlA7 cells were transfected with plasmids carrying different LDLR variants generated by site-directed mutagenesis. LDLR activity and expression were assessed by FACS. RESULTS: 11/13 variants affect LDLR function (p.Cys109Phe; p.Cys143Arg; p.Glu267Lys; p.Cys352Ser; p.Ile451Thr; p.His485Gln; p.Asp492Asn; p.Val500Ala; p.Gly529Arg; p.Phe614Ile; p.Glu626Lys) and 2/13 are inconclusive (p.Arg81Cys; p.Gly98Arg;). CONCLUSION: Of the 13 variants studied, 8 were classified as VUS by ACMG criteria, but for 7 of these 8, our functional studies were able to reassign them as Likely pathogenic or Pathogenic. For an accurate diagnosis, an effort must be made to improve functional characterization of putative disease-causing variants.
Assuntos
Hiperlipoproteinemia Tipo II , Receptores de LDL , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Mutação , Mutação de Sentido Incorreto , Fenótipo , Receptores de LDL/genética , Receptores de LDL/metabolismoRESUMO
Hereditary neuropathies form a heterogeneous group of disorders for which over 40 causal genes have been identified to date. Recently, dominant mutations in the transient receptor potential vanilloid 4 gene were found to be associated with three distinct neuromuscular phenotypes: hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy and congenital distal spinal muscular atrophy. Transient receptor potential vanilloid 4 encodes a cation channel previously implicated in several types of dominantly inherited bone dysplasia syndromes. We performed DNA sequencing of the coding regions of transient receptor potential vanilloid 4 in a cohort of 145 patients with various types of hereditary neuropathy and identified five different heterozygous missense mutations in eight unrelated families. One mutation arose de novo in an isolated patient, and the remainder segregated in families. Two of the mutations were recurrent in unrelated families. Four mutations in transient receptor potential vanilloid 4 targeted conserved arginine residues in the ankyrin repeat domain, which is believed to be important in protein-protein interactions. Striking phenotypic variability between and within families was observed. The majority of patients displayed a predominantly, or pure, motor neuropathy with axonal characteristics observed on electrophysiological testing. The age of onset varied widely, ranging from congenital to late adulthood onset. Various combinations of additional features were present in most patients including vocal fold paralysis, scapular weakness, contractures and hearing loss. We identified six asymptomatic mutation carriers, indicating reduced penetrance of the transient receptor potential vanilloid 4 defects. This finding is relatively unusual in the context of hereditary neuropathies and has important implications for diagnostic testing and genetic counselling.
Assuntos
Mutação de Sentido Incorreto , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Canais de Cátion TRPV/genética , Adulto , Idade de Início , Idoso , Sequência de Aminoácidos , Criança , Estudos de Coortes , Família , Feminino , Haplótipos , Humanos , Laringoscopia , Masculino , Modelos Moleculares , Condução Nervosa , Linhagem , Doenças do Sistema Nervoso Periférico/fisiopatologia , Análise de Sequência de DNA , Canais de Cátion TRPV/químicaRESUMO
Complex traits are characterized by multiple genes and variants acting simultaneously on a phenotype. However, studying the contribution of individual pairs of genes to complex traits has been challenging since human genetics necessitates very large population sizes, while findings from model systems do not always translate to humans. Here, we combine genetics with combinatorial RNAi (coRNAi) to systematically test for pairwise additive effects (AEs) and genetic interactions (GIs) between 30 lipid genome-wide association studies (GWAS) genes. Gene-based burden tests from 240,970 exomes show that in carriers with truncating mutations in both, APOB and either PCSK9 or LPL ("human double knock-outs") plasma lipid levels change additively. Genetics and coRNAi identify overlapping AEs for 12 additional gene pairs. Overlapping GIs are observed for TOMM40/APOE with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate plasma and cellular lipid levels primarily via AEs and nominates putative drug target pairs for improved lipid-lowering combination therapies.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Pró-Proteína Convertase 9/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Neurocam/genética , Neurocam/metabolismo , Pró-Proteína Convertase 9/genéticaRESUMO
Over 40 mutations in the GDAP1 gene have been shown to segregate with Charcot-Marie-Tooth disease (CMT). Among these, only two mutations, i.e., S194X and Q163X have been reported in a sufficient number of CMT families to allow for the construction of reliable phenotype-genotype correlations. Both the S194X and Q163X mutations have been shown to segregate with an early-onset and severe neuropathy resulting in loss of ambulance at the beginning of the second decade of life. In this study, we identified the L239F mutation in the GDAP1 gene in one Bulgarian and five Polish families. We hypothesized that the L239F mutation may result from a founder effect in the European population since this mutation has previously been reported in Belgian, Czech, and Polish patients. In fact, we detected a common disease-associated haplotype within the 8q13-q21 region in the Polish, German, Italian, Czech, and Bulgarian CMT families. Like the previously detected "regional" S194X and Q163X mutations, respectively present in Maghreb countries and in patients of Spanish descent, the L239F mutation seems to be the most common GDAP1 pathogenic variant in the Central and Eastern European population. Given the likely presence of a common ancestor harboring the L239F mutation, we decided to compare the phenotypes of the CMT (L239F) patients collected in this study with those of previously reported cases. In contrast to CMT4A caused by the S194X and Q163X mutations, the CMT phenotype resulting from the L239F substitution represents a milder clinical entity with a long-preserved period of ambulance at least until the end of the second decade of life.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Efeito Fundador , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Idade de Início , Doença de Charcot-Marie-Tooth/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 8/genética , Europa (Continente) , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Proteínas/genética , Adulto JovemRESUMO
Inherited peripheral neuropathies are frequent neuromuscular disorders known for their clinical and genetic heterogeneity. In 33 families, we identified 8 mutations in HINT1 (encoding histidine triad nucleotide-binding protein 1) by combining linkage analyses with next-generation sequencing and subsequent cohort screening of affected individuals. Our study provides evidence that loss of functional HINT1 protein results in a distinct phenotype of autosomal recessive axonal neuropathy with neuromyotonia.
Assuntos
Anormalidades Múltiplas/genética , Neuropatia Hereditária Motora e Sensorial/genética , Mutação de Sentido Incorreto , Miotonia/genética , Proteínas do Tecido Nervoso/genética , Anormalidades Múltiplas/enzimologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Análise Mutacional de DNA , Expressão Gênica , Genes Recessivos , Estudos de Associação Genética , Teste de Complementação Genética , Neuropatia Hereditária Motora e Sensorial/enzimologia , Humanos , Camundongos , Miotonia/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , SíndromeRESUMO
Incomplete penetrance has rarely been reported in Charcot-Marie-Tooth disease. Our aim is to describe reduced penetrance in a hereditary motor neuropathy pedigree due to mutation in the transient receptor potential vallinoid 4 (TRPV4) gene. The pedigree comprised two affected members, the proband aged 44 years and her affected daughter aged 7 years, and seven additional related subjects, three of whom were subclinical gene mutation carriers aged 9, 40 and 70 years. Clinico-electrophysiological studies, MRI of lower-limb musculature and genetic testing of the TRPV4 were performed. The proband presented with a moderate facio-scapulo-peroneal syndrome, whereas her symptomatic daughter suffered from severe congenital spinal muscular atrophy with arthrogryposis, laryngomalacia, and vocal cord paresis. Electrophysiological evaluation revealed a pure motor axonal neuropathy. In the proband, MRI showed extensive and widespread fatty atrophy of lower-leg musculature, whereas in thigh musculature there was just mild distal fatty infiltration of vastus lateralis. Genetic testing revealed a heterozygous Arg269Cys mutation in the TPRV4 gene. In all three mutation carriers results from clinical and electrophysiological examination, and MRI of foot and lower-leg musculature were normal. We conclude that non-penetrance may be an integral feature of neuropathic syndromes associated with TRPV4 gene mutation.