Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Curr Res Neurobiol ; 6: 100130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694514

RESUMO

A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.

3.
Br J Pharmacol ; 179(14): 3675-3692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088415

RESUMO

BACKGROUND AND PURPOSE: Many psychotherapeutic drugs, including clozapine, display polypharmacology and act on GABAA receptors. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal α5 subunit-containing GABAA receptors. The purpose of this study is to investigate the effects of tricyclic compounds on α5 subunit-containing receptor subtypes. EXPERIMENTAL APPROACH: Functional studies of effects by seven antipsychotic and antidepressant medications were performed in several GABAA receptor subtypes by two-electrode voltage-clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the α5 subunit, probing a novel binding site. Radioligand displacement data complemented the functional and mutational findings. KEY RESULTS: The antipsychotic drugs clozapine and chlorpromazine exerted functional inhibition on multiple GABAA receptor subtypes, including those containing α5-subunits. Based on a chlorpromazine binding site observed in a GABA-gated bacterial homologue, we identified a novel site in α5 GABAA receptor subunits and demonstrate differential usage of this and the orthosteric sites by these ligands. CONCLUSION AND IMPLICATIONS: Despite high molecular and functional similarities among the tested ligands, they reduce GABA currents by differential usage of allosteric and orthosteric sites. The chlorpromazine site we describe here is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology. Further studies in defined subtypes are needed to substantiate mechanistic links between the therapeutic effects of clozapine and its action on certain GABAA receptor subtypes.


Assuntos
Antipsicóticos , Clozapina , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Clorpromazina/farmacologia , Clozapina/farmacologia , Humanos , Ligantes , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA