Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 41(6): 1598-604, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256261

RESUMO

ALS (amyotrophic lateral sclerosis), a fatal motoneuron (motor neuron) disease, occurs in clinically indistinguishable sporadic (sALS) or familial (fALS) forms. Most fALS-related mutant proteins identified so far are prone to misfolding, and must be degraded in order to protect motoneurons from their toxicity. This process, mediated by molecular chaperones, requires proteasome or autophagic systems. Motoneurons are particularly sensitive to misfolded protein toxicity, but other cell types such as the muscle cells could also be affected. Muscle-restricted expression of the fALS protein mutSOD1 (mutant superoxide dismutase 1) induces muscle atrophy and motoneuron death. We found that several genes have an altered expression in muscles of transgenic ALS mice at different stages of disease. MyoD, myogenin, atrogin-1, TGFß1 (transforming growth factor ß1) and components of the cell response to proteotoxicity [HSPB8 (heat shock 22kDa protein 8), Bag3 (Bcl-2-associated athanogene 3) and p62] are all up-regulated by mutSOD1 in skeletal muscle. When we compared the potential mutSOD1 toxicity in motoneuron (NSC34) and muscle (C2C12) cells, we found that muscle ALS models possess much higher chymotryptic proteasome activity and autophagy power than motoneuron ALS models. As a result, mutSOD1 molecular behaviour was found to be very different. MutSOD1 clearance was found to be much higher in muscle than in motoneurons. MutSOD1 aggregated and impaired proteasomes only in motoneurons, which were particularly sensitive to superoxide-induced oxidative stress. Moreover, in muscle cells, mutSOD1 was found to be soluble even after proteasome inhibition. This effect could be associated with a higher mutSOD1 autophagic clearance. Therefore muscle cells seem to manage misfolded mutSOD1 more efficiently than motoneurons, thus mutSOD1 toxicity in muscle may not directly depend on aggregation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Músculos/metabolismo , Dobramento de Proteína , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Neurônios Motores/patologia , Músculos/patologia , Superóxido Dismutase/química , Superóxido Dismutase-1
2.
Pharmacol Res ; 65(2): 221-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22178654

RESUMO

Anabolic/androgenic steroids (AAS) are drugs that enhance muscle mass, and are often illegally utilized in athletes to improve their performances. Recent data suggest that the increased risk for amyotrophic lateral sclerosis (ALS) in male soccer and football players could be linked to AAS abuse. ALS is a motor neuron disease mainly occurring in sporadic (sALS) forms, but some familial forms (fALS) exist and have been linked to mutations in different genes. Some of these, in their wild type (wt) form, have been proposed as risk factors for sALS, i.e. superoxide dismutase 1 (SOD1) gene, whose mutations are causative of about 20% of fALS. Notably, SOD1 toxicity might occur both in motor neurons and in muscle cells. Using gastrocnemius muscles of mice overexpressing human mutant SOD1 (mutSOD1) at different disease stages, we found that the expression of a selected set of genes associated to muscle atrophy, MyoD, myogenin, atrogin-1, and transforming growth factor (TGF)ß1, is up-regulated already at the presymptomatic stage. Atrogin-1 gene expression was increased also in mice overexpressing human wtSOD1. Similar alterations were found in axotomized mouse muscles and in cultured ALS myoblast models. In these ALS models, we then evaluated the pharmacological effects of the synthetic AAS nandrolone on the expression of the genes modified in ALS muscle. Nandrolone administration had no effects on MyoD, myogenin, and atrogin-1 expression, but it significantly increased TGFß1 expression at disease onset. Altogether, these data suggest that, in fALS, muscle gene expression is altered at early stages, and AAS may exacerbate some of the alterations induced by SOD1 possibly acting as a contributing factor also in sALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expressão Gênica/efeitos dos fármacos , Mutação , Nandrolona/farmacologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Anabolizantes/farmacologia , Androgênios/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteína MyoD/biossíntese , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miogenina/biossíntese , Miogenina/genética , Miogenina/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
J Neurochem ; 118(2): 266-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554318

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuronal disease which occurs in sporadic or familial forms, clinically indistinguishable. About 15% of familial ALS cases are linked to mutations of the superoxide dismutase 1 (SOD1) gene that may induce misfolding in the coded protein, exerting neurotoxicity to motoneurons. However, other cell types might be target of SOD1 toxicity, because muscle-restricted expression of mutant SOD1 correlates with muscle atrophy and motoneurons death. We analysed the molecular behaviour of mutant SOD1 in motoneuronal NSC34 and muscle C2C12 cells. We found that misfolded mutant SOD1 clearance is much more efficient in muscle C2C12 than in motoneuronal NSC34 cells. Mutant SOD1 forms aggregates and impairs the proteasome only in motoneuronal NSC34 cells. Interestingly, NSC34 cells expressing mutant SOD1 are more sensitive to a superoxide-induced oxidative stress. Moreover, in muscle C2C12 cells mutant SOD1 remains soluble even when proteasome is inhibited with MG132. The higher mutant SOD1 clearance in muscle cells correlates with a more efficient proteasome activity, combined with a robust autophagy activation. Therefore, muscle cells seem to better manage misfolded SOD1 species, not because of an intrinsic property of the mutant protein, but in function of the cell environment, indicating also that the SOD1 toxicity at muscle level may not directly depend on its aggregation rate.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Neurônios Motores/enzimologia , Células Musculares/enzimologia , Mutação/fisiologia , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular , Linhagem Celular Transformada , Humanos , Neurônios Motores/patologia , Células Musculares/patologia , Mioblastos/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Superóxido Dismutase/genética , Superóxido Dismutase-1
4.
Brain Struct Funct ; 219(1): 105-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23212301

RESUMO

Neuritin 1 (Nrn1 or cpg15-1) is an activity-dependent protein involved in synaptic plasticity during brain development, a process that relies upon neuronal migration. By analyzing Nrn1 expression, we found that it is highly expressed in a mouse model of migrating immortalized neurons (GN11 cells), but not in a mouse model of non-migrating neurons (GT1-7 cells). We thus hypothesized that Nrn1 might control neuronal migration. By using complementary assays, as Boyden's microchemotaxis, scratch-wounding and live cell imaging, we found that GN11 cell migration is enhanced when Nrn1 is overexpressed and decreased when Nrn1 is silenced. The effects of Nrn1 in promoting neuronal migration have been then confirmed ex vivo, on rat cortical interneurons, by Boyden chamber assays and focal electroporation of acute embryonic brain slices. Furthermore, we found that Nrn1 level modulation affects GN11 cell morphology. The process is also paralleled by Nrn1-induced α-tubulin post-translational modifications, a well-recognized marker of microtubule stability. Altogether, the data demonstrate a novel function of Nrn1 in promoting migration of neuronal cells and indicate that Nrn1 levels impact on microtubule stability.


Assuntos
Movimento Celular/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Animais , Encéfalo/citologia , Diferenciação Celular , Células Cultivadas , Regulação para Baixo/fisiologia , Embrião de Mamíferos , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Eminência Mediana/citologia , Camundongos , Neuropeptídeos/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Técnicas de Cultura de Tecidos , Tubulina (Proteína)/metabolismo , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
5.
Biol Open ; 2(3): 277-82, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23519094

RESUMO

En route to the neocortex, interneurons migrate around and avoid the developing striatum. This is due to the chemorepulsive cues of class 3 semaphorins (Sema3A and Sema3F) acting through neuropilin and plexin co-receptors expressed in interneurons. In a recent genetic screen aimed at identifying novel components that may play a role in interneuron migration, we identified LIM-kinase 2 (Limk2), a kinase previously shown to be involved in cell movement and in Sema7A-PlexinC1 signalling. Here we show that Limk2 is differentially expressed in interneurons, with a higher expression in the subpallium compared to cortex, suggesting it may play a role in their migration through the subpallium. Chemotactic assays, carried out with small interfering RNAs (siRNAs), revealed that Limk2-siRNA transfected interneurons are less responsive to Sema3A, but respond to Sema3F. Lack of responsiveness to Sema3A resulted in their aberrant invasion of the developing striatum, as demonstrated in brain slice preparations and in in utero electroporated mouse embryos with the same siRNAs. Our results reveal a previously unknown role for Limk2 in interneuron migration and Sema3A signalling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA