Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 307: 114484, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078067

RESUMO

Realising the carbon (C) sequestration capacity of agricultural soils is needed to reach Paris Climate Agreement goals; thus, quantifying hedgerow planting potential to offset anthropogenic CO2 emissions is crucial for accurate climate mitigation modelling. Although being a widespread habitat in England and throughout Europe, the potential of hedgerows to contribute to net-zero targets is unclear. This is the first study to quantify the soil organic carbon (SOC) sequestration rate associated with planting hedgerows. We derived SOC stocks beneath hedgerows based on two estimation methods to assess differences from adjacent intensively managed grassland fields and how these may be affected by sampling depth and hedgerow age, as well as the SOC estimation method used. Twenty-six hedgerows on five dairy farms in Cumbria, England, were classified based on the time since their planting. We measured SOC stocks in 10 cm depth intervals in the top 50 cm of soil beneath hedgerows and in adjacent grassland fields. SOC beneath hedgerows was on average 31.3% higher than in the fields, 3.3% for 2-4 year old hedgerows, 14.4% for 10 year old, 45.2% for 37 year old, and 57.2% for older ones. We show that SOC sequestration rate beneath 37 year old hedgerows was 1.48 Mg C ha-1 yr-1 in the top 50 cm of soil. If England reaches its goal of a 40% increase in hedgerow length, 6.3 Tg CO2 will be stored in the soil over 40 years, annually offsetting 4.7%-6.4% of present-day agricultural CO2 emissions. However, the current rate of planting funded by agri-environment schemes, which today reaches only 0.02% of emissions, is too slow. Private-sector payments for ecosystem services initiatives (e.g., 'Milk Plan') show much higher rates of planting and are needed alongside agri-environment schemes to ensure hedgerow planting contributes to net-zero targets.


Assuntos
Sequestro de Carbono , Solo , Agricultura , Carbono , Ecossistema
2.
Conserv Biol ; 34(1): 148-157, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31161689

RESUMO

Offset schemes help avoid or revert habitat loss through protection of existing habitat (avoided deforestation), through the restoration of degraded areas (natural regrowth), or both. The spatial scale of an offset scheme may influence which of these 2 outcomes is favored and is an important aspect of the scheme's design. However, how spatial scale influences the trade-offs between the preservation of existing habitat and restoration of degraded areas is poorly understood. We used the largest forest offset scheme in the world, which is part of the Brazilian Forest Code, to explore how implementation at different spatial scales may affect the outcome in terms of the area of avoided deforestation and area of regrowth. We employed a numerical simulation of trade between buyers (i.e., those who need to offset past deforestation) and sellers (i.e., landowners with exceeding native vegetation) in the Brazilian Amazon to estimate potential avoided deforestation and regrowth at different spatial scales of implementation. Allowing offsets over large spatial scales led to an area of avoided deforestation 12 times greater than regrowth, whereas restricting offsets to small spatial scales led to an area of regrowth twice as large as avoided deforestation. The greatest total area (avoided deforestation and regrowth combined) was conserved when the spatial scale of the scheme was small, especially in locations that were highly deforested. To maximize conservation gains from avoided deforestation and regrowth, the design of the Brazilian forest-offset scheme should focus on restricting the spatial scale in which offsets occur. Such a strategy could help ensure conservation benefits are localized and promote the recovery of degraded areas in the most threatened forest landscapes.


Los esquemas de compensación ayudan a evitar o revertir la pérdida de hábitat mediante la protección del hábitat existente (deforestación evitada), mediante la restauración de áreas degradadas (recrecimiento natural) o ambos. La escala espacial de una mitigación puede influir en cuál de ellos es seleccionado y es un aspecto importante del diseño de esquema. Sin embargo, no se entiende bien cómo influye la escala espacial en las compensaciones entre la preservación del hábitat existente y la restauración de áreas degradadas. Utilizamos el esquema de compensación forestal más grande del mundo, que forma parte del Código Forestal Brasileño, para explorar cómo la implementación a diferentes escalas espaciales puede afectar el resultado en términos de la superficie de deforestación evitada y el área de recrecimiento. Empleamos una simulación numérica del comercio entre compradores (i. e., aquellos que necesitan compensar la deforestación pasada) y vendedores (i. e., propietarios con exceso de vegetación nativa) en la Amazonía brasileña para estimar deforestación evitada y el recrecimiento a diferentes escalas espaciales de implementación. Permitir compensaciones en grandes escalas espaciales dio lugar a una superficie de deforestación evitada 12 veces mayor que de recrecimiento, mientras que restringir compensaciones a pequeñas escalas espaciales dio lugar a una superficie de recrecimiento dos veces mayor que la deforestación evitada. La mayor superficie total (deforestación evitada y recrecimiento combinados) se conservó cuando la escala espacial del esquema era pequeña, especialmente en localidades muy deforestadas. Para maximizar los beneficios de conservación derivados de la deforestación evitada y el recrecimiento, el diseño del esquema brasileño de compensaciones debe centrarse en restringir la escala espacial en la que se producen las compensaciones. Esta estrategia ayudaría a garantizar que los beneficios de la conservación sean localizados y promuevan la recuperación de zonas degradadas en los paisajes forestales más amenazados.


Assuntos
Conservação dos Recursos Naturais , Florestas , Brasil , Ecossistema
3.
Environ Sci Technol ; 53(22): 13228-13237, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31691557

RESUMO

Despite the proliferation of control technologies, air pollution remains a major concern across the United States, suggesting the need for a paradigm shift in methods for mitigating emissions. Based on data about annual emissions in U.S. counties and current land cover, we show that existing forest, grassland, and shrubland vegetation take up a significant portion of current U.S. emissions. Restoring land cover, where possible, to county-level average canopy cover can further remove pollution of SO2, PM10, PM2.5, and NO2 by an average of 27% through interception of particulate matter and absorption of gaseous pollutants. We find such nature-based solutions to be cheaper than technology for several National Emission Inventory sectors. Our results with and without monetary valuation of ecological cobenefits identify sectors and counties that are most economically attractive for nature-based solutions as compared to the use of pollution control technologies. We also estimate the sizes of urban and rural populations that would benefit from this novel ecosystem-based approach. This suggests that even though vegetation cannot fully negate the impact of emissions at all times, policies encouraging ecosystems as control measures in addition to technological solutions may promote large investments in ecological restoration and provide several societal benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ecossistema , Monitoramento Ambiental , Humanos , Material Particulado , População Rural , Estados Unidos
4.
Glob Chang Biol ; 23(2): 474-484, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387088

RESUMO

Understanding responses of forests to increasing CO2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for.


Assuntos
Florestas , Temperatura , Dióxido de Carbono , Demografia , Árvores , Água
5.
Glob Chang Biol ; 23(3): e5-e6, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997068

RESUMO

We recently demonstrated that growth trends from tree rings from Van Der Sleen et al. (Nature Geoscience, 8, 2015, 24) and Groenendijk et al. (Global Change Biology, 21, 2015, 3762) are affected by demographic biases. In particular, clustered age distributions led to a negative bias in their growth trends. In a response, they challenge our analysis and present an alternative correction approach. We here show that their arguments are incorrect and based on misunderstanding of our analysis and that their alternative approach does not work.


Assuntos
Árvores/crescimento & desenvolvimento , Humanos , Clima Tropical
6.
J Environ Manage ; 177: 331-40, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27111651

RESUMO

We present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek. The InVEST model may do a poor job estimating the spatial distribution of water yield in the Upper Upatoi Creek Watershed because baseflow provides a significant portion of the site's total water yield, which means that storage dynamics which are not modeled by InVEST may be important. We also compare the ability of these two models, as well as one newly developed set of ecosystem service indices, to deliver useful guidance for land management decisions focused on providing hydrologic ecosystem services in three particular decision contexts: environmental flow ecosystem services, ecosystem services for potable water supply, and ecosystem services for rainfed irrigation. We present a simple framework for selecting models or indices to evaluate hydrologic ecosystem services as a way to formalize where models deliver useful guidance.


Assuntos
Hidrologia/métodos , Modelos Teóricos , Recursos Hídricos , Conservação dos Recursos Naturais , Água Potável , Ecossistema , Georgia , Indiana , Solo
7.
Environ Sci Technol ; 49(3): 1752-60, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25560912

RESUMO

Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Engenharia , Atividades Humanas , Humanos , Indústrias
8.
Proc Natl Acad Sci U S A ; 109(15): 5609-14, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22393001

RESUMO

The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.


Assuntos
Biodiversidade , Peixes/crescimento & desenvolvimento , Abastecimento de Alimentos , Centrais Elétricas , Rios , Migração Animal , Animais , Biomassa , China , Técnicas de Apoio para a Decisão
9.
Proc Biol Sci ; 281(1794): 20141799, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25232140

RESUMO

Pollinators contribute around 10% of the economic value of crop production globally, but the contribution of these pollinators to human nutrition is potentially much higher. Crops vary in the degree to which they benefit from pollinators, and many of the most pollinator-dependent crops are also among the richest in micronutrients essential to human health. This study examines regional differences in the pollinator dependence of crop micronutrient content and reveals overlaps between this dependency and the severity of micronutrient deficiency in people around the world. As much as 50% of the production of plant-derived sources of vitamin A requires pollination throughout much of Southeast Asia, whereas other essential micronutrients such as iron and folate have lower dependencies, scattered throughout Africa, Asia and Central America. Micronutrient deficiencies are three times as likely to occur in areas of highest pollination dependence for vitamin A and iron, suggesting that disruptions in pollination could have serious implications for the accessibility of micronutrients for public health. These regions of high nutritional vulnerability are understudied in the pollination literature, and should be priority areas for research related to ecosystem services and human well-being.


Assuntos
Produtos Agrícolas/provisão & distribuição , Abastecimento de Alimentos/estatística & dados numéricos , Saúde Global , Desnutrição/epidemiologia , Micronutrientes/deficiência , Polinização , Deficiência de Ácido Fólico , Humanos , Deficiências de Ferro , Micronutrientes/metabolismo , Prevalência , Oligoelementos/deficiência , Oligoelementos/metabolismo , Deficiência de Vitamina A/epidemiologia
10.
Conserv Biol ; 28(2): 427-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24372589

RESUMO

Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Modelos Teóricos , Biodiversidade , África do Sul , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
11.
Proc Natl Acad Sci U S A ; 108(52): 21134-9, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160726

RESUMO

The consequences of biodiversity decline in intensified agricultural landscapes hinge on surviving biotic assemblages. Maintaining crucial ecosystem processes and services requires resilience to natural and anthropogenic disturbances. However, the resilience and stability of surviving biological communities remain poorly quantified. From a 10-y dataset comprising 2,880 bird censuses across a land-use gradient, we present three key findings concerning the resilience and stability of Costa Rican bird communities. First, seed dispersing, insect eating, and pollinating guilds were more resilient to low-intensity land use than high-intensity land use. Compared with forest assemblages, bird abundance, species richness, and diversity were all ~15% lower in low-intensity land use and ~50% lower in high-intensity land use. Second, patterns in species richness generally correlated with patterns in stability: guilds exhibited less variation in abundance in low-intensity land use than in high-intensity land use. Finally, interspecific differences in reaction to environmental change (response diversity) and possibly the portfolio effect, but not negative covariance of species abundances, conferred resilience and stability. These findings point to the changes needed in agricultural production practices in the tropics to better sustain bird communities and, possibly, the functional and service roles that they play.


Assuntos
Agricultura/métodos , Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Análise de Variância , Animais , Análise por Conglomerados , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Costa Rica , Ecótipo , Geografia , Estudos Longitudinais , Método de Monte Carlo , Densidade Demográfica , Clima Tropical
12.
Proc Natl Acad Sci U S A ; 107(14): 6270-4, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308583

RESUMO

The molecular chaperone GroEL exists in at least two allosteric states, T and R, that interconvert in an ATP-controlled manner. Thermodynamic analysis suggests that the T-state population becomes negligible with increasing ATP concentrations, in conflict with the requirement for conformational cycling, which is essential for the operation of molecular machines. To solve this conundrum, we performed fluorescence correlation spectroscopy on the single-ring version of GroEL, using a fluorescent switch recently built into its structure, which turns "on," i.e., increases its fluorescence dramatically, when ATP is added. A series of correlation functions was measured as a function of ATP concentration and analyzed using singular-value decomposition. The analysis assigned the signal to two states whose dynamics clearly differ. Surprisingly, even at ATP saturation, approximately 50% of the molecules still populate the T state at any instance of time, indicating constant out-of-equilibrium cycling between T and R. Only upon addition of the cochaperonin GroES does the T-state population vanish. Our results suggest a model in which the T/R ratio is controlled by the rate of ADP release after hydrolysis, which can be determined accordingly.


Assuntos
Trifosfato de Adenosina/química , Chaperonina 60/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 60/metabolismo , Dinâmica não Linear , Conformação Proteica , Espectrometria de Fluorescência
13.
Sci Total Environ ; 892: 164482, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257619

RESUMO

Agroforestry practices, such as hedgerow planting, are widely encouraged for climate change mitigation and there is an urgent need to assess their contribution to national 'net-zero' targets. This study examined the impact that planting hedgerows at different rates could make to UK net-zero goals over the next 40 years, with a focus on 2050. We analysed the carbon (C) content of native hedgerow species and determined hedge aboveground biomass (AGB) C stock via destructive sampling of hedges of known ages. AGB C stocks ranged from 8.34 Mg C ha-1 in the youngest hedges, to 40.42 Mg C ha-1 in old ones. Knowing the age of the hedgerows, we calculated their annual average AGB C sequestration rate, which was highest in young hedges (2.09 Mg C ha-1 yr-1), and lowest in 39 year old mature, regularly trimmed hedgerows (0.86 Mg C ha-1 yr-1). We present a time series of the annual AGB C sequestration rate change between hedge age categories, which increases from 2.09 Mg C ha-1 yr-1 in the first 6 years after planting, to 2.26 Mg C ha-1 yr-1 in the next 6 years, and then decreases to 0.43 Mg C ha-1 yr-1 between years 13 and 40. Our results indicate that, if encouraged widely, hedgerow planting can be a valuable tool for atmospheric CO2 capture and storage, contributing towards net-zero targets. However, current planting rates (1778.8 km yr-1) are too low to reach the net-zero goal set by the UK Climate Change Committee of increasing hedgerow length by 40 % by 2050. An increased planting rate of 7148.1 km yr-1 will achieve this goal by 2050, and, over 40 years, store 3.41 Tg CO2 in hedge AGB, or 10.13 Tg CO2 in hedge total biomass and in the soil, annually offsetting 1.5 %-4.5 % of UK annual agricultural CO2 emissions.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Biomassa , Dióxido de Carbono/análise , Agricultura , Solo , Plantas , Carbono
14.
Sci Total Environ ; 833: 155042, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35395297

RESUMO

Accurate modelling of changes in freshwater supplies is critical in an era of increasing human demand, and changes in land use and climate. However, there are concerns that current landscape-scale models do not sufficiently capture catchment-level changes, whilst large-scale comparisons of empirical and simulated water yield changes are lacking. Here we modelled annual water yield in two time periods (1: 1985-1994 and 2: 2008-2017) across 81 catchments in England and validated against empirical data. Our objectives were to i) investigate whether modelling absolute or relative change in water yield is more accurate and ii) determine which predictors have the greatest impact on model accuracy. We used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Annual Water Yield model. In this study, absolute values refer to volumetric units of million cubic metres per year (Mm3/y), either at the catchment or hectare level. Modelled annual yields showed high accuracy as indicated by the low Mean Absolute Deviation (MAD, based on normalised data, 0 is high and 1 is low accuracy) at the catchment (1: 0.013 ± 0.019, 2: 0.012 ± 0.020) and hectare scales (1: 0.03 ± 0.030, 2: 0.030 ± 0.025). But accuracy of modelled absolute change in water yield showed a more moderate fit on both the catchment (MAD = 0.055 ± 0.065) and hectare (MAD = 0.105 ± 0.089) scales. Relative change had lower accuracy (MAD = 0.189 ± 0.135). Anthropogenic modifications to the hydrological system, including water abstraction contributed significantly to the inaccuracy of change values at the catchment and hectare scales. Quantification of changes in freshwater provision can be more accurately articulated using absolute values rather than using relative values. Absolute values can provide clearer guidance for mitigation measures related to human consumption. Accuracy of modelled change is related to different aspects of human consumption, suggesting anthropogenic impacts are critically important to consider when modelling water yield.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Água Doce , Humanos , Hidrologia , Água
15.
PLoS One ; 17(1): e0258334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35020743

RESUMO

Ecosystem markets are proliferating around the world in response to increasing demand for climate change mitigation and provision of other public goods. However, this may lead to perverse outcomes, for example where public funding crowds out private investment or different schemes create trade-offs between the ecosystem services they each target. The integration of ecosystem markets could address some of these issues but to date there have been few attempts to do this, and there is limited understanding of either the opportunities or barriers to such integration. This paper reports on a comparative analysis of eleven ecosystem markets in operation or close to market in Europe, based on qualitative analysis of 25 interviews, scheme documentation and two focus groups. Our results indicate three distinct types of markets operating from the regional to national scale, with different modes of operation, funding and outcomes: regional ecosystem markets, national carbon markets and green finance. The typology provides new insights into the operation of ecosystem markets in practice, which may challenge traditionally held notions of Payment for Ecosystem Services. Regional ecosystem markets, in particular, represent a departure from traditional models, by using a risk-based funding model and aggregating both supply and demand to overcome issues of free-riding, ecosystem service trade-offs and land manager engagement. Central to all types of market were trusted intermediaries, brokers and platforms to aggregate supply and demand, build trust and lower transaction costs. The paper outlines six options for blending public and private funding for the provision of ecosystem services and proposes a framework for integrating national carbon markets and green finance with regional ecosystem markets. Such integration may significantly increase funding for regenerative agriculture and conservation across multiple habitats and services, whilst addressing issues of additionality and ecosystem service trade-offs between multiple schemes.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Carbono/economia , Europa (Continente) , Grupos Focais , Humanos , Entrevistas como Assunto
16.
Proc Natl Acad Sci U S A ; 105(36): 13403-8, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18757747

RESUMO

Interactions between denaturants and proteins are commonly used to probe the structures of the denatured state ensemble and their stabilities. Osmolytes, a class of small intracellular organic molecules found in all taxa, also profoundly affect the equilibrium properties of proteins. We introduce the molecular transfer model, which combines simulations in the absence of denaturants or osmolytes, and Tanford's transfer model to predict the dependence of equilibrium properties of proteins at finite concentration of osmolytes. The calculated changes in the thermodynamic quantities (probability of being in the native basin of attraction, m values, FRET efficiency, and structures of the denatured state ensemble) with GdmCl concentration [C] for the protein L and cold shock protein CspTm compare well with experiments. The radii of gyration of the subpopulation of unfolded molecules for both proteins decrease (i.e., they undergo a collapse transition) as [C] decreases. Although global folding is cooperative, residual secondary structures persist at high denaturant concentrations. The temperature dependence of the specific heat shows that the folding temperature (T(F)) changes linearly as urea and trimethylamine N-oxide (TMAO) concentrations increase. The increase in T(F) in TMAO can be as large as 20 degrees C, whereas urea decreases T(F) by as much as 35 degrees C. The stabilities of protein L and CspTm also increase linearly with the concentration of osmolytes (proline, sorbitol, sucrose, TMAO, and sarcosine).


Assuntos
Modelos Moleculares , Proteínas/química , Transferência Ressonante de Energia de Fluorescência , Pressão Osmótica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Solventes , Temperatura , Termodinâmica
17.
Sci Total Environ ; 776: 145190, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639459

RESUMO

Nature visitation is important, both culturally and economically. Given the contribution of nature recreation to multiple societal goals, comprehending determinants of nature visitation is essential to understand the drivers associated with the popularity of nature areas, for example, to inform land-use planning or site management strategies to maximise benefits. Understanding the factors related to nature, tourism and recreation can support the management of nature areas and thereby, also conservation efforts and biodiversity protection. This study applied a Multiscale Geographically Weighted Regression (MGWR) to quantify the spatially varying influence of different factors associated with nature visitation in Europe and North America. Results indicated that some explanatory variables were stationary for all sites (age 15 to 65, population density (within 25 km), GDP, area, built-up areas, plateaus, and mountains). In contrast, others exhibited significant spatial non-stationarity (locally variable): needle-leaf trees (conifers), trails, travel time, roads, and Red List birds and amphibians. Needle-leaf trees and travel time were found to be negatively significant in Europe. Roads were found to have a significant positive effect in North America. Trails and Red List bird species were found to have a positive effect in both North America and North Europe, with a greater effect in Europe. Red List amphibians was the only spatially variable predictor to have both a positive and negative impact, with selected sites in North America and northern Europe being positive, whereas Iceland and central and southern Europe were negative. The scale of the response-predictor relationship (bandwidth) of these locally variable predictors was smallest for Red List amphibians at 1033 km, with all other spatially variable predictors between 9558 and 12,285 km. The study demonstrates the contribution that MGWR, a spatially explicit model, can make to support a deeper understanding of processes associated with nature visitation in different geographic contexts.


Assuntos
Biodiversidade , Recreação , Animais , Conservação dos Recursos Naturais , Ecossistema , Europa (Continente) , Islândia , América do Norte
18.
J Am Chem Soc ; 131(8): 2942-7, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19239269

RESUMO

The essential and nontrivial role of the denatured state of proteins in their folding reaction is being increasingly scrutinized in recent years. Single molecule FRET (smFRET) experiments show that the denatured state undergoes a continuous collapse (or coil-to-globule) transition as the concentration of a chemical denaturant is decreased, suggesting that conformational entropy of the denatured state is an important part of the free energy of folding. Such observations question the validity of the classical Tanford transfer model, which suggests that the folding free energy can be understood solely based on the difference in amino acid solvation between the folded state and a fixed unfolded state. An alternative to the transfer model is obtained here from a polymer theoretical analysis of a series of published smFRET data. The analysis shows that the free energy of denatured-state collapse has a linear dependence on denaturant concentration, an outcome of the interplay between enthalpic and entropic contributions. Surprisingly, the slope of the free energy of collapse agrees very well with the respective slope of the free energy of folding. This conformity of values obtained from two very different measurements shows that it is the collapse transition in the denatured state which mediates the effect of denaturants on folding. The energetics of folding are thus governed by the competition of solvation and conformational entropy in the denatured state.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Químicos , Proteínas/química , Entropia , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica
20.
Sci Total Environ ; 651(Pt 2): 2432-2443, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336433

RESUMO

For many years, Protected Areas (PA) have been an important tool for conserving nature. Recently, also societal aspects have been introduced into PA management via the introduction of the Ecosystem Services (ES) approach. This review discusses the historical background of PAs, PA management, and the ES approach. We then discuss the relevance and applicability of the ES approach for PA management, including the different definitions of ES, different classification methods, and the ways in which ES are measured. We conclude that there are still major challenges ahead in using the ES approach in PA management and so recommendations are given on the way in which the ES approach should be integrated into PA management.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA