Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808721

RESUMO

Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights: Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.

2.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862092

RESUMO

The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.


Assuntos
MicroRNAs , Animais , Adulto , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Encéfalo/metabolismo , Mamíferos/genética
3.
Front Mol Neurosci ; 14: 646072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994943

RESUMO

Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.

4.
Curr Opin Neurobiol ; 57: 54-61, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30743177

RESUMO

Non-coding RNAs have emerged as potent regulators of numerous cellular processes. In neurons and circuits, these molecules serve especially critical functions that ensure neural activity is maintained within appropriate physiological parameters. Their targets include synaptic proteins, ion channels, neurotransmitter receptors, and components of essential signaling cascades. Here, we discuss how several species of non-coding RNAs (ncRNAs) regulate intrinsic excitability and synaptic transmission, both during development and in mature circuits. Furthermore, we present the relationships between aberrant ncRNA expression and psychiatric disorders. The research presented here demonstrates how ncRNAs can be useful tools for elucidating fundamental neurobiology mechanisms and identifying the key molecular players.


Assuntos
Rede Nervosa , Transdução de Sinais , Redes Neurais de Computação , Neurônios , RNA não Traduzido
5.
Sci Rep ; 9(1): 198, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655559

RESUMO

We recently demonstrated that the circadian clock component CRY2 is an essential cofactor in the SCFFBXL3-mediated ubiquitination of c-MYC. Because our demonstration that CRY2 recruits phosphorylated substrates to SCFFBXL3 was unexpected, we investigated the scope of this role by searching for additional substrates of FBXL3 that require CRY1 or CRY2 as cofactors. Here, we describe an affinity purification mass spectrometry (APMS) screen through which we identified more than one hundred potential substrates of SCFFBXL3+CRY1/2, including the cell cycle regulated Tousled-like kinase, TLK2. Both CRY1 and CRY2 recruit TLK2 to SCFFBXL3, and TLK2 kinase activity is required for this interaction. Overexpression or genetic deletion of CRY1 and/or CRY2 decreases or enhances TLK2 protein abundance, respectively. These findings reinforce the idea that CRYs function as co-factors for SCFFBXL3, provide a resource of potential substrates, and establish a molecular connection between the circadian and cell cycle oscillators via CRY-modulated turnover of TLK2.


Assuntos
Criptocromos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Células Cultivadas , Relógios Circadianos , Criptocromos/genética , Proteínas F-Box/metabolismo , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Fator de Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases
6.
Sci Adv ; 5(1): eaau9060, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746467

RESUMO

Compounds targeting the circadian clock have been identified as potential treatments for clock-related diseases, including cancer. Our cell-based phenotypic screen revealed uncharacterized clock-modulating compounds. Through affinity-based target deconvolution, we identified GO289, which strongly lengthened circadian period, as a potent and selective inhibitor of CK2. Phosphoproteomics identified multiple phosphorylation sites inhibited by GO289 on clock proteins, including PER2 S693. Furthermore, GO289 exhibited cell type-dependent inhibition of cancer cell growth that correlated with cellular clock function. The x-ray crystal structure of the CK2α-GO289 complex revealed critical interactions between GO289 and CK2-specific residues and no direct interaction of GO289 with the hinge region that is highly conserved among kinases. The discovery of GO289 provides a direct link between the circadian clock and cancer regulation and reveals unique design principles underlying kinase selectivity.


Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Renais/metabolismo , Animais , Proteínas CLOCK/metabolismo , Carcinoma de Células Renais/patologia , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Humanos , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA