Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230195, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38736337

RESUMO

Micrometeorites are estimated to represent the main part of the present flux of extraterrestrial matter found on the Earth's surface and provide valuable samples to probe the interplanetary medium. Here, we describe large and representative collections of micrometeorites currently available to the scientific community. These include Antarctic collections from surface ice and snow, as well as glacial sediments from the eroded top of nunataks-summits outcropping from the icesheet-and moraines. Collections extracted from deep-sea sediments (DSS) produced a large number of micrometeorites, in particular, iron-rich cosmic spherules that are rarer in other collections. Collections from the old and stable surface of the Atacama Desert show that finding large numbers of micrometeorites is not restricted to polar regions or DSS. The advent of rooftop collections marks an important step into involving citizen science in the study of micrometeorites, as well as providing potential sampling locations over all latitudes to explore the modern flux. We explore their strengths of the collections to address specific scientific questions and their potential weaknesses. The future of micrometeorite research will involve the finding of large fossil micrometeorite collections and benefit from recent advances in sampling cosmic dust directly from the air. This article is part of the theme issue 'Dust in the Solar System and beyond'.

2.
Sci Adv ; 10(3): eadi7203, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241366

RESUMO

The Hayabusa2 spacecraft delivered samples of the carbonaceous asteroid Ryugu to Earth. Some of the sample particles show evidence of micrometeoroid impacts, which occurred on the asteroid surface. Among those, particles A0067 and A0094 have flat surfaces on which a large number of microcraters and impact melt splashes are observed. Two impact melt splashes and one microcrater were analyzed to unveil the nature of the objects that impacted the asteroid surface. The melt splashes consist mainly of Mg-Fe-rich glassy silicates and Fe-Ni sulfides. The microcrater trapped an impact melt consisting mainly of Mg-Fe-rich glassy silicate, Fe-Ni sulfides, and minor silica-rich glass. These impact melts show a single compositional trend indicating mixing of Ryugu surface materials and impactors having chondritic chemical compositions. The relict impactor in one of the melt splashes shows mineralogical similarity with anhydrous chondritic interplanetary dust particles having a probable cometary origin. The chondritic micrometeoroids probably impacted the Ryugu surface during its residence in a near-Earth orbit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA