Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(18): 6484-6498, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37873867

RESUMO

Electroencephalographic (EEG) microstates can provide a unique window into the temporal dynamics of large-scale brain networks across brief (millisecond) timescales. Here, we analysed fundamental temporal features of microstates extracted from the broadband EEG signal in a large (N = 139) cohort of children spanning early-to-middle childhood (4-12 years of age). Linear regression models were used to examine if participants' age and biological sex could predict the temporal parameters GEV, duration, coverage, and occurrence, for five microstate classes (A-E) across both eyes-closed and eyes-open resting-state recordings. We further explored associations between these microstate parameters and posterior alpha power after removal of the 1/f-like aperiodic signal. The microstates obtained from our neurodevelopmental EEG recordings broadly replicated the four canonical microstate classes (A to D) frequently reported in adults, with the addition of the more recently established microstate class E. Biological sex served as a significant predictor in the regression models for four of the five microstate classes (A, C, D, and E). In addition, duration and occurrence for microstate E were both found to be positively associated with age for the eyes-open recordings, while the temporal parameters of microstates C and E both exhibited associations with alpha band spectral power. Together, these findings highlight the influence of age and sex on large-scale functional brain networks during early-to-middle childhood, extending understanding of neural dynamics across this important period for brain development.


Assuntos
Encéfalo , Eletroencefalografia , Adulto , Humanos , Criança , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Olho , Modelos Lineares
2.
Cereb Cortex ; 32(8): 1653-1667, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519333

RESUMO

Theta-gamma coupling (TGC) is a neurophysiologic mechanism that supports working memory (WM). TGC is associated with N-back performance, a WM task. Similar to TGC, theta and alpha event-related synchronization (ERS) and desynchronization (ERD) are also associated with WM. Few studies have examined the longitudinal relationship between WM performance and TGC, ERS, or ERD. This study aimed to determine if changes in WM performance are associated with changes in TGC (primary aim), as well as theta and alpha ERS or ERD over 6 to 12 weeks. Participants included 62 individuals aged 60 and older with no neuropsychiatric conditions or with remitted Major Depressive Disorder (MDD) and no cognitive disorders. TGC, ERS, and ERD were assessed using electroencephalography (EEG) during the N-back task (3-back condition). There was an association between changes in 3-back performance and changes in TGC, alpha ERD and ERS, and theta ERS in the control group. In contrast, there was only a significant association between changes in 3-back performance and changes in TGC in the subgroup with remitted MDD. Our results suggest that the relationship between WM performance and TGC is stable over time, while this is not the case for changes in theta and alpha ERS and ERD.


Assuntos
Transtornos Cognitivos , Transtorno Depressivo Maior , Idoso , Cognição , Sincronização Cortical , Eletroencefalografia , Humanos , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade
3.
Int Psychogeriatr ; 35(3): 143-155, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-33190659

RESUMO

DESIGN: Pilot randomized double-blind-controlled trial of repetitive paired associative stimulation (rPAS), a paradigm that combines transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) with peripheral median nerve stimulation. OBJECTIVES: To study the impact of rPAS on DLPFC plasticity and working memory performance in Alzheimer's disease (AD). METHODS: Thirty-two patients with AD (females = 16), mean (SD) age = 76.4 (6.3) years were randomized 1:1 to receive a 2-week (5 days/week) course of active or control rPAS. DLPFC plasticity was assessed using single session PAS combined with electroencephalography (EEG) at baseline and on days 1, 7, and 14 post-rPAS. Working memory and theta-gamma coupling were assessed at the same time points using the N-back task and EEG. RESULTS: There were no significant differences between the active and control rPAS groups on DLPFC plasticity or working memory performance after the rPAS intervention. There were significant main effects of time on DLPFC plasticity, working memory, and theta-gamma coupling, only for the active rPAS group. Further, on post hoc within-group analyses done to generate hypotheses for future research, as compared to baseline, only the rPAS group improved on post-rPAS day 1 on all three indices. Finally, there was a positive correlation between working memory performance and theta-gamma coupling. CONCLUSIONS: This study did not show a beneficial effect of rPAS for DLPFC plasticity or working memory in AD. However, post hoc analyses showed promising results favoring rPAS and supporting further research on this topic. (Clinicaltrials.gov-NCT01847586).


Assuntos
Doença de Alzheimer , Memória de Curto Prazo , Feminino , Humanos , Idoso , Memória de Curto Prazo/fisiologia , Doença de Alzheimer/terapia , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Plasticidade Neuronal/fisiologia
4.
J Psychiatry Neurosci ; 47(5): E325-E335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36104082

RESUMO

BACKGROUND: The efficacy of repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (dlPFC) has been established in patients with treatment-resistant depression (TRD), suggesting that alterations in signal propagation from the left dlPFC to other brain regions may be linked to the pathophysiology of TRD. Alterations at the cellular level, including dysfunction of oligodendrocytes, may contribute to these network abnormalities. The objectives of the present study were to compare signal propagation from the left dlPFC to other neural networks in patients with TRD and healthy controls. We used TMS combined with electroencephalography to explore links between cell-specific gene expression and signal propagation in TRD using a virtual-histology approach. METHODS: We examined source-level estimated signal propagation from the left dlPFC to the 7 neural networks in 60 patients with TRD and 30 healthy controls. We also calculated correlations between the interregional profiles of altered signal propagation and gene expression for 9 neural cell types derived from the Allen Human Brain Atlas data set. RESULTS: Signal propagation from the left dlPFC to the salience network was reduced in the θ and α bands in patients with TRD (p = 0.0055). Furthermore, this decreased signal propagation was correlated with cellspecific gene expression of oligodendrocytes (p < 0.000001). LIMITATIONS: These results show only part of the pathophysiology of TRD, because stimulation was limited to the left dlPFC. CONCLUSION: Reduced signal propagation from the left dlPFC to the salience network may represent a pathophysiological endophenotype of TRD; this finding may be associated with reduced expression of oligodendrocytes.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Depressão , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/terapia , Humanos , Oligodendroglia/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Estimulação Magnética Transcraniana/métodos
5.
Neuromodulation ; 25(8): 1378-1386, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32870549

RESUMO

OBJECTIVES: Magnetic seizure therapy (MST) is a novel investigational brain stimulation modality for patients with treatment-resistant depression (TRD). MST is a potential alternative seizure-based treatment to electroconvulsive therapy (ECT), given that it may offer equivalent antidepressant efficacy, yet with a relative sparing of cognitive functioning. Heart rate variability (HRV) is a marker of central autonomic functioning. We aimed to explore the relationships among baseline HRV, age, clinical outcome, and executive function following MST, in patients with TRD. MATERIALS AND METHODS: Eighty-eight TRD patients (55 females; 18-70 years) were enrolled and 48 patients completed a course of MST in an open-label study. Patients received MST treatments two to three times per week, using one of three stimulation frequencies (ie, 100 Hz, 50 Hz, or 25 Hz) at 100% stimulator output. Root mean square of the successive R-R differences (RMSSD), an index of HRV, was computed from a baseline electrocardiogram (ECG) recording. Clinical symptoms were assessed using the Hamilton Depression Rating Scale (HAM-D24) and the Quick Inventory of Depressive Symptomatology (QIDS16). Executive function was assessed using the Trail Making Test and the Mazes Test from the MATRICS battery. RESULTS: Baseline RMSSD was correlated with baseline HAM-D24 (r = -0.340, p = 0.001) and baseline Mazes Test (r = 0.417, p = 0.0007) but not with baseline Trail Making Test. Furthermore, baseline RMSSD was not correlated with changes on the HAM-D24, QIDS16, or total scores on the Trail Making Test. However, there was a significant correlation between baseline RMSSD and improvement on the Mazes Test following MST (r = 0.502, p = 0.0004). CONCLUSIONS: Since this is an open-label trial, the influence of the placebo effect cannot be excluded. However, our results suggest that baseline RMSSD may be a state-biomarker of depression and executive function impairment. Additionally, while baseline vagally mediated resting cardiac activity did not predict the outcome of depression, it may mediate executive function improvements following MST.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Função Executiva , Feminino , Humanos , Depressão/etiologia , Depressão/terapia , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/psicologia , Frequência Cardíaca , Convulsões/terapia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
6.
Int J Geriatr Psychiatry ; 35(10): 1233-1242, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525222

RESUMO

OBJECTIVES: To assess the effects of a 10-day course of bilateral anodal transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) on working memory and global cognition in elderly participants with remitted major depressive disorder at 14 days (primary outcome) and 90 days (secondary outcome) post intervention. DESIGN: Randomized double blind controlled trial (clinicaltrials.gov # NCT02212366). SETTING: Community dwelling outpatient setting. PARTICIPANTS: Sixty or older with previous single or recurrent episodes of major depression currently in full remission. INTERVENTION: A 10 day course of active or sham bilateral DLPFC anodal tDCS. MEASUREMENTS: (a) Working memory assessed by a computerized N back task, and (b) global cognition assessed by a standard paper and pencil neuropsychological test battery. RESULTS: Thirty-three participants, (mean (SD) age = 66. 5 (5.7) year) were enrolled, out of which 18 (mean (SD) age = 66. 3 (5.8) year) were randomized to active tDCS and 15 (mean (SD) age = 66. 7 (5.8) years) to sham tDCS. All randomized participants except one from the sham group -completed the tDCS course. There were no differences between the groups on working memory performance or global cognition at 14 or 90 days post intervention. Both groups showed promising changes in working memory and global cognition over time. CONCLUSIONS: tDCS was well tolerated in older patients with remitted MDD, however, as compared to the sham group, it did not improve working memory or global cognition. Future studies should investigate tDCS with alternative parameters to enhance cognition in this population.


Assuntos
Transtorno Depressivo Maior , Estimulação Transcraniana por Corrente Contínua , Idoso , Cognição , Depressão , Transtorno Depressivo Maior/terapia , Método Duplo-Cego , Humanos , Memória de Curto Prazo , Projetos Piloto , Córtex Pré-Frontal
7.
Depress Anxiety ; 35(5): 448-456, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29637656

RESUMO

BACKGROUND: Dysfunctional neuroplasticity may be one of the pathophysiological mechanisms underlying major depression. We have previously established methods to assess neuroplasticity from the dorsolateral prefrontal cortex (DLPFC) using a paired associative stimulation (PAS) paradigm, which pairs a preceding peripheral nerve stimulation with subsequent transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG). We aimed to investigate neuroplasticity through the PAS paradigm in the DLPFC in patients with depression compared to healthy subjects. METHODS: Twenty-nine patients with depression and 28 healthy controls participated in this study. There were no significant age or sex differences between the two groups. All participants received PAS paradigm in the DLPFC. We analyzed PAS induced potentiation from the DLPFC in both groups calculating the power of TMS-evoked potentials (TEP). A two-way ANOVA with PAS effect as a within-subject factor and diagnostic group as a between-subject factor was performed to examine the group differences in the PAS paradigm. RESULTS: DLPFC-PAS induced a significant potentiation at the stimulation site in both patients and healthy subjects (mean ± SD: 1.24 ± 0.33 [µV] vs. 1.48 ± 0.28 [µV]). However, when we compared PAS potentiation between patients and healthy subjects, there were significant main effects of PAS (F1,53  = 68.63, p < 0.0001) and PAS-by-diagnostic group interaction (F1,53  = 25.05, p < 0.0001). Post hoc analysis demonstrated that patients had a significantly lower PAS potentiation compared to healthy subjects (t55  = 3.128, p = 0.003). CONCLUSTIONS: Our findings provide evidence for impaired neuroplasticity in DLPFC in patients with depression compared to healthy subjects. Such findings may ultimately help us understand the pathophysiology of MDD and mechanisms involved in its treatment.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Eletroencefalografia/métodos , Potencial Evocado Motor/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Cereb Cortex ; 27(2): 1482-1490, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26759480

RESUMO

Ordering information is a critical process underlying several cognitive functions, especially working memory. Theta phase-gamma amplitude coupling is regarded as a neurophysiological representation of ordering information during working memory performance. However, direct evidence has been lacking in humans. Seventy healthy subjects performed the N-back task, a working memory task that tests ordering information at 3 different levels of difficulties and with 3 different types of trials. Using electroencephalography (EEG) during N-back performance, theta-gamma coupling was assessed during response trials. Multivariate general linear model (GLM) and discriminant analysis were used to assess coupling and theta and gamma power across the N-back conditions and the trial types. During the N-back trials that required ordering of information, N-back condition had independent effects on coupling and on theta and gamma power, with equal contributions among these 3 variables. Theta-gamma coupling contribution declined significantly on the trials that did not require ordering and was intermediate on trials that favored but not necessarily required ordering. Our findings demonstrate for the first time the role of theta-gamma coupling as a mechanism that supports ordering information. They also highlight the potential of using theta-gamma coupling as a neurophysiological marker of brain function in health or disease states.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Modelos Lineares , Memória de Curto Prazo/fisiologia , Ritmo Teta/fisiologia , Adolescente , Adulto , Feminino , Ritmo Gama , Humanos , Masculino , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas , Adulto Jovem
9.
J Neurophysiol ; 116(3): 938-48, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226450

RESUMO

Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.


Assuntos
Eletroencefalografia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana , Adulto , Análise de Variância , Biofísica , Mapeamento Encefálico , Estimulação Elétrica , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Nervo Mediano/fisiologia , Pessoa de Meia-Idade , Estatística como Assunto , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-38309329

RESUMO

Electroencephalogram (EEG) microstates, which represent quasi-stable patterns of scalp topography, are a promising tool that has the temporal resolution to study atypical spatial and temporal networks in autism spectrum disorder (ASD). While current literature suggests microstates are atypical in ASD, their clinical utility, i.e., relationship with the core behavioural characteristics of ASD, is not fully understood. The aim of this study was to examine microstate parameters in ASD, and examine the relationship between these parameters and core behavioural characteristics in ASD. We compared duration, occurrence, coverage, global explained variance percentage, global field power and spatial correlation of EEG microstates between autistic and neurotypical (NT) adults. Modified k-means cluster analysis was used on eyes-closed, resting state EEG from 30 ASD (10 females, 28.97 ± 9.34 years) and 30 age-equated NT (13 females, 29.33 ± 8.88 years) adults. Five optimal microstates, A to E, were selected to best represent the data. Five microstate maps explaining 80.44% of the NT and 78.44% of the ASD data were found. The ASD group was found to have atypical parameters of microstate A, C, D, and E. Of note, all parameters of microstate C in the ASD group were found to be significantly less than NT. While parameters of microstate D, and E were also found to significantly correlate with subscales of the Ritvo Autism Asperger Diagnostic Scale - Revised (RAADS-R), these findings did not survive a Bonferroni Correction. These findings, in combination with previous findings, highlight the potential clinical utility of EEG microstates and indicate their potential value as a neurophysiologic marker that can be further studied.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Feminino , Humanos , Adulto Jovem , Encéfalo/fisiologia , Transtorno Autístico/diagnóstico , Transtorno do Espectro Autista/diagnóstico , Eletroencefalografia , Neurofisiologia
11.
Cogn Neurodyn ; 18(3): 795-811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826646

RESUMO

Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and ß-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (ß = 0.27; p = 0.006), age (ß = - 0.29; p = 0.012), and parietal cortical thickness (ß = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09938-y.

12.
Transl Psychiatry ; 14(1): 153, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503740

RESUMO

Whether individuals with mild cognitive impairment (MCI) and a history of major depressive disorder (MDD) are at a higher risk for cognitive decline than those with MCI alone is still not clear. Previous work suggests that a reduction in prefrontal cortical theta phase-gamma amplitude coupling (TGC) is an early marker of cognitive impairment. This study aimed to determine whether using a TGC cutoff is better at separating individuals with MCI or MCI with remitted MDD (MCI+rMDD) on cognitive performance than their clinical diagnosis. Our hypothesis was that global cognition would differ more between TGC-based groups than diagnostic groups. We analyzed data from 128 MCI (mean age: 71.8, SD: 7.3) and 85 MCI+rMDD (mean age: 70.9, SD: 4.7) participants. Participants completed a comprehensive neuropsychological battery; TGC was measured during the N-back task. An optimal TGC cutoff was determined during the performance of the 2-back. This TGC cutoff was used to classify participants into low vs. high-TGC groups. We then compared Cohen's d of the difference in global cognition between the high and low TGC groups to Cohen's d between the MCI and MCI+rMDD groups. We used bootstrapping to determine 95% confidence intervals for Cohen's d values using the whole sample. As hypothesized, Cohen's d for the difference in global cognition between the TGC groups was larger (0.64 [0.32, 0.88]) than between the diagnostic groups (0.10 [0.004, 0.37]) with a difference between these two Cohen's d's of 0.54 [0.10, 0.80]. Our findings suggest that TGC is a useful marker to identify individuals at high risk for cognitive decline, beyond clinical diagnosis. This could be due to TGC being a sensitive marker of prefrontal cortical dysfunction that would lead to an accelerated cognitive decline.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Humanos , Idoso , Transtorno Depressivo Maior/diagnóstico , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Testes Neuropsicológicos
13.
JMIR Res Protoc ; 12: e41013, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36573651

RESUMO

BACKGROUND: Suicide is among the top 10 leading causes of death worldwide. Of people who died by suicide, the majority are diagnosed with depression. It is estimated that 25%-60% of people with bipolar depression (BD) will attempt suicide at least once, and 10%-15% will die by suicide. Several treatments, such as lithium, clozapine, electroconvulsive therapy, and cognitive behavioral therapy, have been shown to be effective in treating suicidality. However, these treatments can be difficult to tolerate or may take months to take effect. Ketamine, a glutamate N-methyl-D-aspartate antagonist, has been shown to have rapid antisuicidal effect and antidepressant qualities, and is thus a promising intervention to target acute suicidality in patients with BD. However, the biological mechanism underlying its therapeutic action remains poorly understood. Enhancing our understanding of underlying mechanisms of action for ketamine's effectiveness in reducing suicidality is critical to establishing biological markers of treatment response and developing tailored, personalized interventions for patients with BD. OBJECTIVE: This is an open-label clinical trial to test the safety and feasibility of repeated ketamine infusions to treat acute suicidality. The primary objective is to test the safety and feasibility of ketamine intervention. The secondary objective is to examine ketamine's potential neurophysiological mechanisms of action by assessing cortical excitation and inhibition to determine potential biomarkers of clinical response. Other objectives are to evaluate the effect of ketamine on acute suicidality and other clinical outcomes, such as depressive symptoms and quality of life, to inform a future larger trial. METHODS: This open-label clinical trial aims to test the safety and feasibility of repeated ketamine infusions in patients with BD for suicidality and to assess ketamine's neurophysiological effects. A sterile form of racemic ketamine hydrochloride will be administered over a 40-minute intravenous infusion 2 times per week on nonconsecutive days for 4 weeks (8 sessions). We will recruit 30 adults (24-65 year olds) over 2 years from an academic psychiatric hospital in Toronto, Canada. RESULTS: This study is currently ongoing and actively recruiting participants. So far, 5 participants have completed the trial, 1 is currently in active treatment, and 8 participants are on the waitlist to be screened. We anticipate initial results being available in the fall of 2023. This proposal was presented as a poster presentation at the Research to Reality Global Summit on Psychedelic-Assisted Therapies and Medicine, held in May 2022 in Toronto, Canada. CONCLUSIONS: Developing effective interventions for acute suicidality in high-risk populations such as those with BD remains a major therapeutic challenge. Ketamine is a promising treatment due to its rapid antidepressant and antisuicidal effects, but its underlying neurophysiological mechanisms of action remain unknown. TRIAL REGISTRATION: ClinicalTrials.gov NCT05177146; https://clinicaltrials.gov/ct2/show/NCT05177146. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/41013.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36574922

RESUMO

There are growing application of machine learning models to study the intricacies of non-linear and non-stationary characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) data in neurobiologically complex and heterogeneous conditions such as autism spectrum disorder (ASD). Such tools have potential diagnostic applications, and given the highly heterogeneous presentation of ASD, might prove fruitful in early detection and therefore could facilitate very early intervention. We conducted a systematic review (PROSPERO ID#CRD42021257438) by searching PubMed, EMBASE, and PsychINFO for machine learning approaches for EEG and MEG analyses in ASD. Thirty-nine studies were identified, of which the majority (18) used support vector machines for classification; other successful methods included deep learning. Thirty-seven studies were found to employ EEG and two were found to employ MEG. This systematic review indicate that machine learning methods can be used to classify ASD, predict ASD diagnosis in high-risk infants as early as 3 months of age, predict ASD symptom severity, and classify states of cognition in ASD with high accuracy. Replication studies testing validity, reproducibility and generalizability in tandem with randomized controlled trials in ASD populations will likely benefit the field.


Assuntos
Transtorno do Espectro Autista , Magnetoencefalografia , Lactente , Humanos , Transtorno do Espectro Autista/diagnóstico , Reprodutibilidade dos Testes , Eletroencefalografia , Aprendizado de Máquina
15.
Schizophr Res ; 261: 245-255, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844414

RESUMO

Transcranial magnetic stimulation (TMS) can offer therapeutic benefits and provide value in neurophysiological research. One of the newer TMS paradigms is theta burst stimulation (TBS) which can be delivered in two patterns: continuous (cTBS - inducing LTD-like effects) and intermittent (iTBS - inducing LTP-like effects). This review paper aims to explore studies that have utilized TBS protocols over different areas of the cortex to study the neurophysiological functions and treatment of patients with schizophrenia. PubMed was searched using the following keywords "schizophrenia", "schizoaffective", or "psychosis", and "theta burst stimulation". Out of the 90 articles which were found, thirty met review inclusion criteria. The inclusion criteria included studying the reported effect (clinical, physiological, or both) of at least one session of TBS on human subjects, and abstracts (at minimum) must have been in English. The main target areas included prefrontal cortex (12 studies - 10 dorsolateral prefrontal cortex (DLPFC), 2 dorsomedial prefrontal cortex (DMPFC)) vermal cerebellum (5), and temporo-parietal cortex (8). Other target areas included inferior parietal lobe (2), and motor cortex (3). TBS neurophysiological effect was explored in 5 studies using functional magnetic resonance image (fMRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), electromyography (EMG) and positron emission topography (PET) scan. Overall, TBS can offer great therapeutic potential as it is well-tolerated, feasible, and has few, if any, adverse effects. TBS may be targeted to treat specific symptomatology, as an augmenting intervention to pharmacotherapy, or even improving patient's insight into their diagnosis.


Assuntos
Esquizofrenia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Esquizofrenia/terapia , Eletroencefalografia/métodos , Córtex Pré-Frontal , Lobo Parietal , Ritmo Teta/fisiologia
16.
Biosensors (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36831986

RESUMO

The cortical response to transcranial magnetic stimulation (TMS) has notable inter-trial variability. One source of this variability can be the influence of the phase and power of pre-stimulus neuronal oscillations on single-trial TMS responses. Here, we investigate the effect of brain oscillatory activity on TMS response in 49 distinct healthy participants (64 datasets) who had received single-pulse TMS over the left dorsolateral prefrontal cortex. Across all frequency bands of theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz), there was no significant effect of pre-TMS phase on single-trial cortical evoked activity. After high-powered oscillations, whether followed by a TMS pulse or not, the subsequent activity was larger than after low-powered oscillations. We further defined a measure, corrected_effect, to enable us to investigate brain responses to the TMS pulse disentangled from the power of ongoing (spontaneous) oscillations. The corrected_effect was significantly different from zero (meaningful added effect of TMS) only in theta and beta bands. Our results suggest that brain state prior to stimulation might play some role in shaping the subsequent TMS-EEG response. Specifically, our findings indicate that the power of ongoing oscillatory activity, but not phase, can influence brain responses to TMS. Aligning the TMS pulse with specific power thresholds of an EEG signal might therefore reduce variability in neurophysiological measurements and also has the potential to facilitate more robust therapeutic effects of stimulation.


Assuntos
Excitabilidade Cortical , Estimulação Magnética Transcraniana , Humanos , Encéfalo , Eletroencefalografia/métodos , Estimulação Magnética Transcraniana/métodos
17.
medRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36711765

RESUMO

Major depressive disorder (MDD) is a leading cause of disability worldwide. One of the most efficacious treatments for treatment-resistant MDD is electroconvulsive therapy (ECT). Recently, magnetic seizure therapy (MST) was developed as an alternative to ECT due to its more favorable side effect profile. While these approaches have been very successful clinically, the neural mechanisms underlying their therapeutic effects are unknown. For example, clinical "slowing" of the electroencephalogram beginning in the postictal state and extending days to weeks post-treatment has been observed in both treatment modalities. However, a recent longitudinal study of a small cohort of ECT patients revealed that, rather than delta oscillations, clinical slowing was better explained by increases in aperiodic activity, an emerging EEG signal linked to neural inhibition. Here we investigate the role of aperiodic activity in a cohort of patients who received ECT and a cohort of patients who received MST treatment. We find that aperiodic neural activity increases significantly in patients receiving either ECT or MST. Although not directly related to clinical efficacy in this dataset, increased aperiodic activity is linked to greater amounts of neural inhibition, which is suggestive of a potential shared neural mechanism of action across ECT and MST.

18.
Alzheimers Res Ther ; 15(1): 133, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550778

RESUMO

BACKGROUND: Alzheimer's dementia (AD) is associated with electroencephalography (EEG) abnormalities including in the power ratio of beta to theta frequencies. EEG studies in mild cognitive impairment (MCI) have been less consistent in identifying such abnormalities. One potential reason is not excluding the EEG aperiodic components, which are less associated with cognition than the periodic components. Here, we investigate whether aperiodic and periodic EEG components are disrupted differently in AD or MCI vs. healthy control (HC) individuals and whether a periodic based beta/theta ratio differentiates better MCI from AD and HC groups than a ratio based on the full spectrum. METHODS: Data were collected from 44 HC (mean age (SD) = 69.1 (5.3)), 114 MCI (mean age (SD) = 72.2 (7.5)), and 41 AD (mean age (SD) = 75.7 (6.5)) participants. Aperiodic and periodic components and full spectrum EEG were compared among the three groups. Receiver operating characteristic curves obtained via logistic regression classifications were used to distinguish the groups. Last, we explored the relationships between cognitive performance and the beta/theta ratios based on the full or periodic spectrum. RESULTS: Aperiodic EEG components did not differ among the three groups. In contrast, AD participants showed an increase in full spectrum and periodic relative powers for delta, theta, and gamma and a decrease for beta when compared to HC or MCI participants. As predicted, MCI group differed from HC participants on the periodic based beta/theta ratio (Bonferroni corrected p-value = 0.036) measured over the occipital region. Classifiers based on beta/theta power ratio in EEG periodic components distinguished AD from HC and MCI participants, and outperformed classifiers based on beta/theta power ratio in full spectrum EEG. Beta/theta ratios were comparable in their association with cognition. CONCLUSIONS: In contrast to a full spectrum EEG analysis, a periodic-based analysis shows that MCI individuals are different on beta/theta ratio when compared to healthy individuals. Focusing on periodic components in EEG studies with or without other biological markers of neurodegenerative diseases could result in more reliable findings to separate MCI from healthy aging, which would be valuable for designing preventative interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/complicações , Eletroencefalografia , Disfunção Cognitiva/psicologia , Cognição , Biomarcadores
19.
Sci Rep ; 13(1): 6796, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100795

RESUMO

Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an effective way to evaluate neurophysiological processes at the level of the cortex. To further characterize the TMS-evoked potential (TEP) generated with TMS-EEG, beyond the motor cortex, we aimed to distinguish between cortical reactivity to TMS versus non-specific somatosensory and auditory co-activations using both single-pulse and paired-pulse protocols at suprathreshold stimulation intensities over the left dorsolateral prefrontal cortex (DLPFC). Fifteen right-handed healthy participants received six blocks of stimulation including single and paired TMS delivered as active-masked (i.e., TMS-EEG with auditory masking and foam spacing), active-unmasked (TMS-EEG without auditory masking and foam spacing) and sham (sham TMS coil). We evaluated cortical excitability following single-pulse TMS, and cortical inhibition following a paired-pulse paradigm (long-interval cortical inhibition (LICI)). Repeated measure ANOVAs revealed significant differences in mean cortical evoked activity (CEA) of active-masked, active-unmasked, and sham conditions for both the single-pulse (F(1.76, 24.63) = 21.88, p < 0.001, η2 = 0.61) and LICI (F(1.68, 23.49) = 10.09, p < 0.001, η2 = 0.42) protocols. Furthermore, global mean field amplitude (GMFA) differed significantly across the three conditions for both single-pulse (F(1.85, 25.89) = 24.68, p < 0.001, η2 = 0.64) and LICI (F(1.8, 25.16) = 14.29, p < 0.001, η2 = 0.5). Finally, only active LICI protocols but not sham stimulation ([active-masked (0.78 ± 0.16, P < 0.0001)], [active-unmasked (0.83 ± 0.25, P < 0.01)]) resulted in significant signal inhibition. While previous findings of a significant somatosensory and auditory contribution to the evoked EEG signal are replicated by our study, an artifact attenuated cortical reactivity can reliably be measured in the TMS-EEG signal with suprathreshold stimulation of DLPFC. Artifact attenuation can be accomplished using standard procedures, and even when masked, the level of cortical reactivity is still far above what is produced by sham stimulation. Our study illustrates that TMS-EEG of DLPFC remains a valid investigational tool.


Assuntos
Artefatos , Córtex Pré-Frontal Dorsolateral , Humanos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia
20.
Biol Psychiatry ; 94(6): 454-465, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084864

RESUMO

BACKGROUND: Intermittent theta burst stimulation (iTBS) targeting the left dorsolateral prefrontal cortex is effective for treatment-resistant depression, but the effects of iTBS on neurophysiological markers remain unclear. Here, we indexed transcranial magnetic stimulation-electroencephalography (TMS-EEG) markers, specifically, the N45 and N100 amplitudes, at baseline and post-iTBS, comparing separated and contiguous iTBS schedules. TMS-EEG markers were also compared between iTBS responders and nonresponders. METHODS: TMS-EEG was analyzed from a triple-blind 1:1 randomized trial for treatment-resistant depression, comparing a separated (54-minute interval) and contiguous (0-minute interval) schedule of 2 × 600-pulse iTBS for 30 treatments. Participants underwent TMS-EEG over the left dorsolateral prefrontal cortex at baseline and posttreatment. One hundred fourteen participants had usable TMS-EEG at baseline, and 98 at posttreatment. TMS-evoked potential components (N45, N100) were examined via global mean field analysis. RESULTS: The N100 amplitude decreased from baseline to posttreatment, regardless of the treatment group (F1,106 = 5.20, p = .02). There were no changes in N45 amplitude in either treatment group. In responders, the N100 amplitude decreased after iTBS (F1,102 = 11.30, p = .001, pcorrected = .0004). Responders showed higher posttreatment N45 amplitude than nonresponders (F1,94 = 4.11, p = .045, pcorrected = .016). Higher baseline N100 amplitude predicted lower post-iTBS depression scores (F4,106 = 6.28, p = .00014). CONCLUSIONS: These results provide further evidence for an association between the neurophysiological effects of iTBS and treatment efficacy in treatment-resistant depression. Future studies are needed to test the predictive potential for clinical applications of TMS-EEG markers.


Assuntos
Depressão , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA