RESUMO
The aim of this study was to improve insulin sensitivity in fructose-treated animals by ingestion of flavonoid quercetin. Several signs of insulin resistance have been developed in rats by drinking 10% fructose solution for 9 weeks. The effect of 6-week-gavage-administrated quercetin (20 mg/kg/day in 1% methyl cellulose solution) was monitored. Rats of the control groups received methyl cellulose vehicle as well. The most striking result of the quercetin treatment was the normalization of the fructose solution drinking to the level of drinking water intake. In addition, quercetin supplementation considerably decreased the plasma glucose and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index in rats consuming fructose. Surprisingly, fructose ingestion did not elevate plasma uric acid, thiobarbituric acid reactive substances, nitrotyrosine, or advanced glycation end products fluorescence. Instead, a reduction of the above parameters was observed. In summary, these results indicate that quercetin supplementation reduces fructose drinking and decreases plasma glucose and the HOMA-IR index. Furthermore, methyl cellulose, in combination with fructose, causes uric acid - lowering, antioxidant and anti-glycation effects. Thus, methyl cellulose possibly shifts fructose metabolism in favor of the utilization of antioxidant features of fructose. Our results call for using methyl cellulose in sweetened beverages and other sweetened food.
Assuntos
Frutose , Resistência à Insulina , Quercetina , Ratos Wistar , Ácido Úrico , Animais , Frutose/administração & dosagem , Quercetina/farmacologia , Quercetina/administração & dosagem , Ácido Úrico/sangue , Ratos , Masculino , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacosRESUMO
BACKGROUND: Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane form of ACE2 causing detrimental effects especially in individuals with developed hypertension or heart disease. Zofenopril, a H2S-releasing angiotensin-converting enzyme inhibitor (ACEI), has been shown to be effective in the treatment of patients with essential hypertension; however, in conditions of ACE2 inhibition its potential beneficial effect has not been investigated yet. Therefore, the aim of the study was to determine the effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats, an animal model of human essential hypertension and heart failure, under conditions of ACE2 inhibition induced by the administration of the specific inhibitor MLN-4760 (MLN). RESULTS: Zofenopril reduced MLN-increased visceral fat to body weight ratio although no changes in systolic blood pressure were recorded. Zofenopril administration resulted in a favorable increase in left ventricle ejection fraction and improvement of diastolic function regardless of ACE2 inhibition, which was associated with increased H2S levels in plasma and heart tissue. Similarly, the acute hypotensive responses induced by acetylcholine, L-NAME (NOsynthase inhibitor) and captopril (ACEI) were comparable after zofenopril administration independently from ACE2 inhibition. Although simultaneous treatment with zofenopril and MLN led to increased thoracic aorta vasorelaxation, zofenopril increased the NO component equally regardless of MLN treatment, which was associated with increased NO-synthase activity in aorta and left ventricle. Moreover, unlike in control rats, the endogenous H2S participated in maintaining of aortic endothelial function in MLN-treated rats and the treatment with zofenopril had no impact on this effect. CONCLUSIONS: Zofenopril treatment reduced MLN-induced adiposity and improved cardiac function regardless of ACE2 inhibition. Although the concomitant MLN and zofenopril treatment increased thoracic aorta vasorelaxation capacity, zofenopril increased the participation of H2S and NO in the maintenance of endothelial function independently from ACE2 inhibition. Our results confirmed that the beneficial effects of zofenopril were not affected by ACE2 inhibition, moreover, we assume that ACE2 inhibition itself can lead to the activation of cardiovascular compensatory mechanisms associated with Mas receptor, nitrous and sulfide signaling.
Assuntos
Captopril , Sistema Cardiovascular , Humanos , Ratos , Animais , Captopril/farmacologia , Ratos Endogâmicos SHR , Enzima de Conversão de Angiotensina 2/farmacologia , Pandemias , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pressão Sanguínea , Hipertensão EssencialRESUMO
This study investigated whether chronic isoproterenol administration could induce kidney alterations and whether ivabradine, a heart rate (HR)-reducing substance exerting cardiovascular protection, is able to attenuate potential kidney damage. Twenty-eight Wistar rats were divided into non-diseased controls, rats treated with ivabradine, rats treated with isoproterenol, and rats treated with isoproterenol plus ivabradine. Six weeks of isoproterenol administration was associated with decreased systolic blood pressure (SBP) (by 25%) and glomerular, tubulointerstitial and vascular/perivascular fibrosis due to enhanced type I collagen volume (7-, 8-, and 4-fold, respectively). Ivabradine reduced HR (by 15%), partly prevented SBP decline (by 10%) and site-specifically mitigated kidney fibrosis by decreasing type I collagen volume in all three sites investigated (by 69, 58, and 67%, respectively) and the ratio of type I collagen-to-type III collagen in glomerular and vascular/perivascular sites (by 79 and 73%, respectively). We conclude that ivabradine exerts protection against kidney remodelling in isoproterenol-induced kidney damage.
Assuntos
Colágeno Tipo I , Nefropatias , Ratos , Animais , Ivabradina/farmacologia , Isoproterenol/toxicidade , Ratos Wistar , Rim , Fibrose , Frequência CardíacaRESUMO
The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.
Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Leptina/metabolismo , Obesidade , Ratos , Proteínas tau/metabolismoRESUMO
Hyperphagia and obesity, which underlie metabolic syndrome, have been linked to multiple health complications and increased mortality. Here, we investigate the differences in plasma proteome between obese and lean Zucker rats in order to identify circulating proteins involved in obesity-related conditions. Plasma samples of male Zucker fatty (obese) rats carrying fatty fa/fa mutation (-/-) and their lean controls were enriched using ProteoMiner technology and labeled with isobaric tags (iTRAQ) for mass spectrometry-based quantitation. We found elevation in levels of coagulation factors whereas levels of serine protease inhibitors were decreased. Levels of acute phase proteins were also altered, as well as complement components. We also noticed differences in the abundance of apolipoproteins. In summary, quantitative proteomic assessment of plasma protein composition in obese Zucker rats revealed a profound landscape of changes, reflecting altered hemostasis, disturbed metabolic processes involving insulin resistance and lipid metabolism and ongoing low-grade inflammation.
Assuntos
Doenças Cardiovasculares , Estado Pré-Diabético , Masculino , Animais , Ratos , Ratos Zucker , Proteoma , Proteômica , Fatores de Risco , Fatores de Risco de Doenças Cardíacas , ObesidadeRESUMO
Neurodegeneration is associated with hypertension and disturbance in fat metabolism. The complex interaction of neurodegenerative processes with both metabolic changes and blood pressure is still not fully elucidated. Here we demonstrate that the experimentally induced tauopathy in hypertensive transgenic animals causes significant downregulation of plasma leptin (53% of control), reduction of body weight by 11%, a 1.2-fold drop of adiposity index, and decrease in HDL cholesterol level, while the fasting glucose and insulin concentration remain unchanged. Despite of these alterations we found the leptin projection circuit including the arcuate nucleus, paraventricular nucleus in hypothalamus, and nucleus tractus solitarius in the brainstem not affected by neurofibrillary pathology. Furthermore, hypertension does not alter disturbances in leptin signalling. The presented data provide further insight into neurodegeneration-induced metabolic alterations relevant for human tauopathies.
Assuntos
Hipertensão , Tauopatias , Animais , Núcleo Arqueado do Hipotálamo , Humanos , Leptina , Modelos TeóricosRESUMO
Renin-angiotensin system (RAS) inhibition supposedly increases the expression of angiotensin converting enzyme 2, serving as a binding site for SARS-CoV-2. Concerns arose regarding therapy with RAS inhibition during the COVID-19 pandemic. However, the pharmacological restraining the classical RAS axis might be beneficial due to the reduction of deleterious effects of angiotensin II and enhancement of the anti-inflammatory angiotensin 1-7 pathway. Unless large controlled studies are performed, RAS inhibition remains the cornerstone therapy in populations with cardiovascular disorders.
Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Sistema Renina-Angiotensina , Angiotensina II/sangue , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Doenças Cardiovasculares/complicações , Infecções por Coronavirus/tratamento farmacológico , Humanos , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacosRESUMO
We have investigated the vasoactive effects of the coupled nitro-sulfide signaling pathway in lobar arteries (LAs) isolated from the nephrectomized kidneys of cancer patients: normotensive patients (NT) and patients with arterial hypertension (AH). LAs of patients with AH revealed endothelial dysfunction, which was associated with an increased response to the exogenous NO donor, nitrosoglutathione (GSNO). The interaction of GSNO with the H2S donor triggered a specific vasoactive response. Unlike in normotensive patients, in patients with AH, the starting and returning of the vasorelaxation induced by the end-products of the H2S-GSNO interaction (S/GSNO) was significantly faster, however, without the potentiation of the maximum. Moreover, increasing glycemia shortened the time required to reach 50% of the maximum vasorelaxant response induced by S/GSNO products so modulating their final effect. Moreover, we found out that, unlike K+ channel activation, cGMP pathway and HNO as probable mediator could be involved in mechanisms of S/GSNO action. For the first time, we demonstrated the expression of genes coding H2S-producing enzymes in perivascular adipose tissue and we showed the localization of these enzymes in LAs of normotensive patients and in patients with AH. Our study confirmed that the heterogeneity of specific nitroso-sulfide vasoactive signaling exists depending on the occurrence of hypertension associated with increased plasma glucose level. Endogenous H2S and the end-products of the H2S-GSNO interaction could represent prospective pharmacological targets to modulate the vasoactive properties of human intrarenal arteries.
Assuntos
Glicemia/metabolismo , Hipertensão/sangue , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Artéria Renal/fisiopatologia , Transdução de Sinais , Sulfetos/metabolismo , Animais , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Glutationa/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Transporte Proteico , Ratos , Serotonina/farmacologia , Artérias Torácicas/efeitos dos fármacos , Artérias Torácicas/fisiopatologia , VasodilataçãoRESUMO
OBJECTIVE: Enkephalins are neuropeptides involved in functions such as pain modulation and/ or cognitive processes. It has been reported that dietary fat modifies enkephalins in the brain. Since enkephalins are hydrolyzed by enkephalinases, the study of the influence of dietary fats, differing in their degree of saturation, on brain fatty acids content and enkephalinase activity is important to understand its regulatory role on neuropeptides under different type of diets. METHODS: We analyzed enkephalinase activity, assayed with alanine-ß-naphthylamide as sub-strate, in frontal cortex of adult male rats fed diets supplemented with fish oil, olive oil or coconut oil, which markedly differed in the saturation of their fatty acids. RESULTS: Rats fed a diet enriched with coconut oil had lower soluble enkephalinase activity than the group fed olive oil (p<0.01) and fish oil (p<0.05) whereas rats fed a diet enriched with fish oil had lower membrane-bound enkephalinase activity than the group fed with olive (p<0.001) or coconut oil (p<0.05). Significant negative correlations were observed between certain fatty acids and enkephalinase activities in the groups fed with olive and coconut oils. No correlations were observed in the group fed with fish oil. CONCLUSIONS: Dietary fat modifies enkephalinase activity in the frontal cortex depending on the degree of saturation of the used oil. It is postulated that the functions, in which enkephalins are involved, such as pain modulation or cognitive functions, may also be affected according to the type of oil used in the diet.
Assuntos
Gorduras na Dieta/farmacologia , Ácidos Graxos/metabolismo , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Neprilisina/metabolismo , Animais , Química Encefálica/efeitos dos fármacos , Óleo de Coco/farmacologia , Dieta , Óleos de Peixe/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Neprilisina/efeitos dos fármacos , Azeite de Oliva/farmacologia , Ratos , Ratos WistarRESUMO
This study investigated the effect of lisinopril (angiotensin-converting enzyme inhibitor) on potential behavioural alterations in spontaneously hypertensive rats (SHR). Three groups of 15-17-week-old rats were investigated for 2 weeks: Wistar control group, SHR group and SHR+lisinopril group. Systolic blood pressure (SBP) was normal in Wistar rats, SHR expressed hypertension and lisinopril normalized the SBP. We observed increased time spent in and increased frequency of entries to the central area of the open field in SHR, while lisinopril induced a trend to reduce the time spent in the central area of the open field and reduced the frequency of entries there. There was a positive correlation between SBP and reduced anxiety-like behaviour in normotensive rats; no correlations in the SHR or SHR+lisinopril groups were observed. We conclude that lisinopril normalized the increase in SBP and partly reversed the alterations of anxiety-like behaviour in SHR.
Assuntos
Anti-Hipertensivos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/psicologia , Lisinopril/farmacologia , Animais , Ansiedade/prevenção & controle , Pressão Sanguínea , Hipertensão/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Ratos WistarRESUMO
(1) Background: Impaired adipose tissue function leads to the development of metabolic disorders. Reactive oxygen species play a key role in the regulation of adipogenesis and insulin-stimulated glucose uptake by adipocytes. Quercetin (QCT) regulates adipogenesis by affecting the redox state of preadipocytes. Ochratoxin A (OTA) is one of the most prevalent mycotoxins contaminating food. It has cytotoxic, genotoxic, pro-inflammatory, and anti-adipogenic effects. Antioxidants are believed to protect cells from the cytotoxicity and genotoxicity induced by OTA. The aim of this study was to investigate the effect of QCT and OTA application on preadipocyte differentiation, oxidative status, and adipocyte metabolism. (2) Methods: Primary rat preadipocytes were isolated from subcutaneous adipose tissue of Wistar rats. Gene expressions were determined by qPCR. Cell viability, reactive oxygen species (ROS) production, glucose uptake, and lipid accumulation were determined using commercially available kits. (3) Results: A dose-dependent inhibitory effect of QCT on adipogenic differentiation was observed, which was accompanied by a decrease in ROS production. Reduced ROS formation is closely related to impaired glucose uptake by adipocytes. (4) Conclusions: The results of this study indicate a key role of ROS in regulating adipogenesis and metabolic pathways, which is affected by the application of QCT and/or OTA.
Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Ocratoxinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Animais , Biomarcadores , Relação Dose-Resposta a Droga , Glucose/metabolismo , Resistência à Insulina , Oxirredução/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
No data are available on heart function in chronic testosterone deficiency and on the effect of estrogen treatment. Eighteen 4-week-old male Lewis rats were randomly divided into 3 groups (n = 6): 1 group of sham-operated rats and 2 groups of castrated rats. Sixty-six weeks after surgery, 1 castrated group received a dose of 17ß-estradiol (10 µg/kg per day) and the remaining 2 groups received a placebo subcutaneously for 14 days. Left ventricular (LV) systolic and diastolic functions were measured by transthoracic echocardiography. Castration decreased LV ejection fraction (9%) and fractional shortening (15%) and deteriorated LV diastolic function (94%). 17ß-Estradiol treatment increased LV ejection fraction (15%) and fractional shortening (31%) and improved LV diastolic function (48%). Plasma testosterone concentrations were decreased in both castrated groups. In conclusion, chronic testosterone deficiency induced LV systolic and diastolic dysfunction; these disorders were reversed by short-term treatment with 17ß-estradiol.
Assuntos
Castração , Ecocardiografia , Estradiol/uso terapêutico , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Estradiol/farmacologia , Masculino , Ratos Endogâmicos Lew , Volume Sistólico/efeitos dos fármacos , Testosterona/sangue , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/fisiopatologiaRESUMO
This study investigated whether continuous light exposure (CLE) results in behavioural disturbances in rats and whether melatonin can modify these potential changes. Four groups of 3-month-old Wistar rats were treated as follows for six weeks: control, melatonin, CLE, and CLE with melatonin. CLE increased systolic blood pressure and melatonin reduced it. No changes in behavioural patterns by CLE were observed. In the controls, melatonin reduced both exploration and locomotion but these parameters remained uninfluenced in the CLE. We conclude that melatonin exerted a different impact on behaviour in controls and in the CLE group.
Assuntos
Comportamento Animal/efeitos dos fármacos , Hipertensão/etiologia , Luz/efeitos adversos , Melatonina/farmacologia , Animais , Comportamento Animal/efeitos da radiação , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos WistarRESUMO
Ivabradine, the selective inhibitor of the If current in the sinoatrial node, exerts cardiovascular protection by its bradycardic effect and potentially pleiotropic actions. However, there is a shortage of data regarding ivabradine's interaction with the renin-angiotensin-aldosterone system (RAAS). This study investigated whether ivabradine is able to protect a hypertensive heart in the model of L-NAME-induced hypertension and to interfere with the RAAS. Four groups (n = 10/group) of adult male Wistar rats were treated as follows for four weeks: control, ivabradine (10 mg/kg/day), L-NAME (40 mg/kg/day), and L-NAME plus ivabradine. L-NAME administration increased systolic blood pressure (SBP) and left ventricular (LV) weight, enhanced hydroxyproline concentration in the LV, and deteriorated the systolic and diastolic LV function. Ivabradine reduced heart rate (HR) and SBP, and improved the LV function. The serum concentrations of angiotensin Ang 1â»8 (Ang II), Ang 1â»5, Ang 1â»7, Ang 1â»10, Ang 2â»8, and Ang 3â»8 were decreased in the L-NAME group and ivabradine did not modify them. The serum concentration of aldosterone and the aldosterone/Ang II ratio were enhanced by L-NAME and ivabradine reduced these changes. We conclude that ivabradine improved the LV function of the hypertensive heart in L-NAME-induced hypertension. The protective effect of ivabradine might have been associated with the reduction of the aldosterone level.
Assuntos
Fármacos Cardiovasculares/farmacologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Ivabradina/farmacologia , NG-Nitroarginina Metil Éster/efeitos adversos , Sistema Renina-Angiotensina/efeitos dos fármacos , Aldosterona/sangue , Angiotensinas/sangue , Animais , Biomarcadores , Pressão Sanguínea/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Hidroxiprolina/sangue , Hidroxiprolina/metabolismo , Hipertensão/diagnóstico , Hipertensão/metabolismo , Masculino , Ratos , Renina/sangue , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
The renin-angiotensin-aldosterone system (RAAS) is a dominant player in several cardiovascular pathologies. This study investigated whether alterations induced by l-NAME, (NLG)-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, and the protective effect of melatonin are associated with changes in the RAAS. Four groups of 3-month-old male Wistar rats (n = 10) were treated as follows for four weeks: untreated controls, rats treated with melatonin (10 mg/kg/day), rats treated with l-NAME (40 mg/kg/day), and rats treated with l-NAME + melatonin. l-NAME administration led to hypertension and left ventricular (LV) fibrosis in terms of enhancement of soluble, insoluble and total collagen concentration and content. Melatonin reduced systolic blood pressure enhancement and lowered the concentration and content of insoluble and total collagen in the LV. The serum concentration of angiotensin (Ang) 1-8 (Ang II) and its downstream metabolites were reduced in the l-NAME group and remained unaltered by melatonin. The serum aldosterone level and its ratio to Ang II (AA2-ratio) were increased in the l-NAME group without being modified by melatonin. We conclude that l-NAME-hypertension is associated with reduced level of Ang II and its downstream metabolites and increased aldosterone concentration and AA2-ratio. Melatonin exerts its protective effect in l-NAME-induced hypertension without affecting RAAS.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão , Melatonina/farmacologia , NG-Nitroarginina Metil Éster/efeitos adversos , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos WistarRESUMO
Fatty acid (FA) uptake and/or intramuscular triglyceride (TG) accumulation in skeletal muscle are increased in obesity, type 2 diabetes and aging. FA translocase (FAT/CD36) translocation, lipin-1 subcellular localization and nuclear factor kappa B (NF-κB) p65 protein content in quadriceps muscle of young and old obese Zucker fa/fa rats and their lean controls were analyzed by immunoblot to define obesity- and aging-related alterations in FA uptake, their subsequent metabolic fate and potential to activate pro-inflammatory signaling. As expected, obesity increased FAT/CD36 content in plasma membrane in quadriceps muscle of fa/fa rats. Aging increased cytosolic lipin-1 content in both, obese rats and their lean controls. Also, old obese rats had decreased level of nuclear extract lipin-1compared to that in old lean rats. Neither obesity nor age altered NF-κB p65 protein content in cytosol and nuclear extract of quadriceps muscle suggesting that obesity/aging-induced changes in FA handling are not accompanied by NF-κB-mediated inflammation. Increase in plasma membrane FAT/CD36 content in obese rats and failure in lipin-1 export to nucleus with progression of obesity, implying an increase in FA uptake and their different channeling into lipid intermediates synthesis pathway in old fa/fa rats versus FA usage in lean rats of the same age.
Assuntos
Envelhecimento/metabolismo , Antígenos CD36/metabolismo , Caderinas/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Frações Subcelulares/metabolismo , Animais , Masculino , Transporte Proteico , Ratos , Ratos ZuckerRESUMO
Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.
Assuntos
Acetilcisteína/análogos & derivados , Anti-Hipertensivos/administração & dosagem , Captopril/administração & dosagem , Hipertensão/tratamento farmacológico , Melatonina/administração & dosagem , Remodelação Ventricular/efeitos dos fármacos , Acetilcisteína/efeitos adversos , Animais , Anti-Hipertensivos/farmacologia , Captopril/farmacologia , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipertensão/induzido quimicamente , Hipertensão/etiologia , Luz/efeitos adversos , Masculino , Melatonina/farmacologia , NG-Nitroarginina Metil Éster/efeitos adversos , Ratos , Ratos WistarRESUMO
Next to epithelial tissues, mineralocorticoid receptors are also expressed in adipose tissue and are involved in the process of adipogenesis. Mineralocorticoid receptors in adipose tissue are likely to be activated mainly by glucocorticoids. The aim of the present study was to test the hypothesis that the processes related to adipogenesis are modified under the conditions associated with high circulating aldosterone. We have made advantage of a model of depression based on tryptophan depletion in which we have previously demonstrated that the elevation of serum aldosterone precedes that of corticosterone. Sixty adult female Sprague-Dawley rats were fed either a low tryptophan diet or control diet for 4 (elevation of aldosterone only), 7 and 14 days (broader neuroendocrine activation) respectively. Gene expression of several adipogenic factors, CD31, interleukin-6, adiponectin, resistin and leptin were evaluated. Levels of mRNAs coding for adipogenic, angiogenic and inflammatory factors in adipose tissue were elevated at 4 and 7 days of tryptophan depletion. Additionally, gene expression of aldosterone sensing 11-ß-hydroxysteroid dehydrogenase 2 and mineralocorticoid receptors were elevated. All changes disappeared at 14 days of tryptophan depletion. Synchronously an increase of adipose tissue mass was observed. Although direct evidence is not provided, observed changes in gene expression may be related to the action of aldosterone on mineralocorticoid receptors. Our findings represent the first data on any changes in gene expression in adipose tissue in animal models of depression.
Assuntos
Adipogenia , Aldosterona/sangue , Corticosterona/sangue , Depressão/sangue , Triptofano/deficiência , Animais , Feminino , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Insulin signaling and Tau protein phosphorylation in the hippocampi of young and old obese Zucker fa/fa rats and their lean controls were assessed to determine whether obesity-induced peripheral insulin resistance and aging are risk factors for central insulin resistance and whether central insulin resistance is related to the pathologic phosphorylation of the Tau protein. RESULTS: Aging and obesity significantly attenuated the phosphorylation of the insulin cascade kinases Akt (protein kinase B, PKB) and GSK-3ß (glycogen synthase kinase 3ß) in the hippocampi of the fa/fa rats. Furthermore, the hyperphosphorylation of Tau Ser396 alone and both Tau Ser396 and Thr231 was significantly augmented by aging and obesity, respectively, in the hippocampi of these rats. CONCLUSIONS: Both age-induced and obesity-induced peripheral insulin resistance are associated with central insulin resistance that is linked to hyperTau phosphorylation. Peripheral hyperinsulinemia, rather than hyperglycemia, appears to promote central insulin resistance and the Tau pathology in fa/fa rats.
Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiopatologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/fisiopatologia , Proteínas tau/metabolismo , Animais , Western Blotting , Teste de Tolerância a Glucose , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Zucker , Transdução de Sinais , Proteínas tau/genéticaRESUMO
Melatonin was previously shown to reduce blood pressure and left ventricular (LV) remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents LV remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month-old male Wistar rats (12 per group) were treated for 2 wk as follows: controls, rats treated with melatonin (10 mg/kg/day) (M), rats treated with isoproterenol (5 mg/kg/day intraperitoneally the second week) (Iso), and rats treated with melatonin (2 wk) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol-induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The antiremodeling effect of melatonin may be of potential benefit in patients with heart failure.