Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227538

RESUMO

Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65 % in segmentation and a mean accuracy of 93.97 % in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.

2.
Cancers (Basel) ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539493

RESUMO

Liver malignancies, particularly hepatocellular carcinoma and metastasis, stand as prominent contributors to cancer mortality. Much of the data from abdominal computed tomography images remain underused by radiologists. This study explores the application of machine learning in differentiating tumor tissue from healthy liver tissue using radiomics features. Preoperative contrast-enhanced images of 94 patients were used. A total of 1686 features classified as first-order, second-order, higher-order, and shape statistics were extracted from the regions of interest of each patient's imaging data. Then, the variance threshold, the selection of statistically significant variables using the Student's t-test, and lasso regression were used for feature selection. Six classifiers were used to identify tumor and non-tumor liver tissue, including random forest, support vector machines, naive Bayes, adaptive boosting, extreme gradient boosting, and logistic regression. Grid search was used as a hyperparameter tuning technique, and a 10-fold cross-validation procedure was applied. The area under the receiver operating curve (AUROC) assessed the performance. The AUROC scores varied from 0.5929 to 0.9268, with naive Bayes achieving the best score. The radiomics features extracted were classified with a good score, and the radiomics signature enabled a prognostic biomarker for hepatic tumor screening.

3.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370717

RESUMO

Valvular Heart Disease (VHD) is a known late complication of radiotherapy for childhood cancer (CC), and identifying high-risk survivors correctly remains a challenge. This paper focuses on the distribution of the radiation dose absorbed by heart tissues. We propose that a dosiomics signature could provide insight into the spatial characteristics of the heart dose associated with a VHD, beyond the already-established risk induced by high doses. We analyzed data from the 7670 survivors of the French Childhood Cancer Survivors' Study (FCCSS), 3902 of whom were treated with radiotherapy. In all, 63 (1.6%) survivors that had been treated with radiotherapy experienced a VHD, and 57 of them had heterogeneous heart doses. From the heart-dose distribution of each survivor, we extracted 93 first-order and spatial dosiomics features. We trained random forest algorithms adapted for imbalanced classification and evaluated their predictive performance compared to the performance of standard mean heart dose (MHD)-based models. Sensitivity analyses were also conducted for sub-populations of survivors with spatially heterogeneous heart doses. Our results suggest that MHD and dosiomics-based models performed equally well globally in our cohort and that, when considering the sub-population having received a spatially heterogeneous dose distribution, the predictive capability of the models is significantly improved by the use of the dosiomics features. If these findings are further validated, the dosiomics signature may be incorporated into machine learning algorithms for radiation-induced VHD risk assessment and, in turn, into the personalized refinement of follow-up guidelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA